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Abstract. This paper examines variability in Optimality Theoretic models by 
considering their mathematical representations.  To this end, four variations on 
Optimality Theory are modeled as simple Decision Theoretic utility functions that 
are then analyzed and compared.  These versions include a strict version of OT, a 
version of OT that permits obligatory constraint tying, a version that permits 
multiple violations of individual constraints, and a stochastic model.  The 
mathematical models help to highlight any of the theoretical difficulties in each 
version, as well as the power of a simple stochastic model.  This paper will 
consider the implications that such models have for linguistic theory and for 
future research with respect to Universal Grammar, language acquisition, natural 
language processing and the dynamics of language change. 

 
 
1. Introduction 
Optimality Theory was first introduced to the linguistics community in 1993 in Prince and 
Smolensky’s seminal work “Optimality Theory: Constraint Interaction in Generative Grammar”.  
In very simple terms, Optimality Theory describes a series of ranked and interacting constraints 
that represent two opposing forces in language: faithfulness to some underlying representation, 
and well-formedness.  According to the principles of Universal Grammar, all these constraints 
are spelled out and, while they can be reranked to accommodate acquiring a particular language, 
cannot be added to.  This implies that there is a fixed number of N constraints. 

Since the introduction of Optimality Theory, the theoretical details have been expanded by a 
number of people.  In this paper we will not primarily be considering the different types of 
constraints, but the way in which constraints are violated and ranked. 

Decision Theory is a science and mathematics dedicated to understanding decision-making 
under uncertainty.  Uncertainty is present in all levels of a speaker’s language understanding—in 
learning; in comprehension (when dealing with ambiguity resolution, for instance); and in 
production.  By this reckoning, understanding language models through Decision Theory is a 
necessary approach, as Decision Theory helps us determine which strategies are reasonable when 
all factors affecting a situation are not known.  Decision Theory allows us to convert our 
knowledge of the world, usually gained through statistical knowledge, into a utility function 
which helps us analyze future decisions based on previously acquired information. 

In this paper, we will examine four different versions of Optimality Theoretic models in 
Decision Theoretic terms.  The goal is to examine theoretical strengths and weaknesses of the 
different versions of Optimality Theory in order to determine which models need to be 
reexamined or discarded, and the nature of future research into the nature of remaining models. 
 
2. Models 
Decision Theoretic models are mathematical formulae that relate the utility of an outcome, 
whether it’s desired or undesired and to what degree, with the expectation or probability of that 
outcome.  For our purposes, Optimality Theory itself has taken care of this with the constraint 



ranking.  Rather than introducing a complex statistical utility function, we will adopt the notion 
of the constraint ranking, which already incorporates the notions of expectation of success or 
failure, and transform this into a mathematical equation that captures the violation of constraints 
and the relative weights of constraints. The utility functions discussed in this section are 
mathematically simple, yet telling. 
 Each of the models described are made of up two principle features: the constraints 
themselves and the constraint ranking.  Each of the constraints, according to the theory of 
Universal Grammar must be listed in each speaker’s grammar at birth; therefore, there cannot be 
an infinite number of constraints, but some finite number N of them.  Each of our utility 
functions will be based on a summation of successfully satisfied constraints, as well as the value 
of success for that constraint.  Because there are a finite number of constraints, we need not 
concern ourselves here with notions of mathematical convergence.  Each of the constraints will 
be indicated by a variable.  In the case where we do not allow multiple violations of constraints, 
the constraints will be given by I0j.  This notation indicates that each constraint is marked by an 
indicator variable, taking on the values of zero or one to indicate failure or success respectively, 
and numbered with the j-subscript as one of the N total constraints in the grammar.  A constraint 
ranking will permute the constraints and associate them with a ranking according to their utility 
in a given language.  The ranking itself will be given by a variable ai that will indicate the value 
of a constraint associated with it being satisfied.  If the constraint is satisfied the coefficient will 
add that much utility to the overall value of the function; if the constraint is not satisfied, the 
coefficient will be multiplied by a zero and no additional utility will be contributed.  Each of the 
models considered below will rely on some variation of these basic ingredients. 
 
2.1. Strict Optimality Theory 
The first of the Optimality Theoretic models we will consider is a strict version of Optimality 
Theory at its bare bones.  This version of Optimality Theory is similar to that ascribed to by John 
McCarthy (2002) and others.  The components of this version of Optimality Theory are quite 
restrictive.  First, although it may not be clear to an outsider how constraints are ranked when 
two constraints do not appear to interact, the speaker must, in fact, rank them, permitting 
minimal variations within a constraint ranking to produce identical grammars.  Second, 
constraints may not accept multiple violations.  Constraints are naturally only satisfied or 
unsatisfied—thus requiring the use of the indicator variable.  Thirdly, constraint rankings, once 
fixed at the conclusion of language acquisition, cannot be modified and constraint rankings are 
impermeable, not admitting to probabilistic variation.  The utility function for this strict OT is 
given in (1). 
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This equation says simply that the utility function U, operating on some element of language x, 
an input for instance that the grammar is analyzing for speech production, has a utility in the 
language equivalent to the sum of the values of the satisfied constraints.  The winning candidate 
will be the candidate with the highest utility. 

We can also take a more literal interpretation of Optimality Theory.  Typically, in OT 
tableaux, constraint violations are marked rather than constraint successes.  We can instead 
consider a loss function, given in (2), where constraints that are satisfied receive a loss value of 
zero, and constraints that are violated receive a loss value of one times the αi value for its place 
in the constraint ranking.  An input to the function that receives the lowest value of L is the 



winning candidate.  It can be shown that maximizing utility and minimizing loss are equivalent 
results (Berger, 1985), so that for the remainder of the paper I will primarily only be considering 
optimizing the relevant utility functions, although I will comment further if the correspondence 
between loss and utility is not obvious. 
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In (1) and (2), there is no specification of the values of ai.  In order to achieve the kind of 
constraint ranking that is described in Optimality Theory, a further specification of the values of 
ai needs to be added here.  So that a single constraint cannot have a lesser utility than the sum of 
lower ranked constraints, each coefficient in the ranking must satisfy the equation in (3).   
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So consider, if the lowest constraint in the ranking is equivalent to a value of one, the next 
highest ranked constraint must be a little higher, say, (1+ε), where epsilon is some small amount 
greater than zero.  The next ranked constraint must be at least this sum, and so forth.  If we 
continue with this scheme, then if there are N constraints, the utility value of the highest ranked 
constraint is 2N-1, and the total possible utility would be approximately 2N.  This relationship 
between the highest and lowest ranked constraints would be true, regardless of the scaling factor 
used.  Since it is unlikely that for a given constraint, all constraints of lower utility will be 
satisfied—the higher the constraint is ranked, the less likely this becomes—we can simplify the 
equation in (3) so that there is just an equal sign. 
 Constraint interaction may also occur in strict Optimality Theory in a limited fashion 
through constraint conjunction.  The utility model described here can be made to naturally 
incorporate constraint conjunction.  Constraint conjunction represents a logical AND between 
two independent constraints.  These can be derived from constraint interaction in our model by 
permitting multiplication of the two constraint variables that are conjoined.  Both must achieve a 
value of one for the multiplication to be nonzero.  Constraint conjunction has logical 
consequences for the grammar.  Even if we permit only two constraints being conjoined at once, 
if all the possible conjunctions must be listed in Universal Grammar and not acquired during the 
learning process, we increase the maximal number of constraints by N(N-1); i.e. the maximal 
utility of the grammar is now two raised to the N2 power.  If we were also to admit of language 
specific constraints, and expanding OT to other parts of the grammar, N becomes large very 
quickly and N2 lager still.  This relates directly to the problem of the infinities.  Though not 
technically, infinite, the size of appears to be capable of growing nearly without bound. 
 
2.2. Other constraint impermeable models 
 Linguists champion this kind of strict model of Optimality Theory because it is 
theoretically simple.  Just as we can see from the mathematical representation, it requires only 
two relationships between the grammar and the value of an element: the ranking itself, and the 
relationship between the constraints and the ranking.  The simpler a model is, the easier it should 
be to acquire and encode in UG.  The drawback to the model remains in the question of whether 
or not it can capture all of the features of known languages and language acquisition.  Thus, 
other models have arisen.    In this section we will consider two possible variations on Optimality 
Theory that preserve the notions of constraint impermeability. 
 



2.2.1. Tied constraints 
A model of Optimality Theory that satisfies the second and third features of strict OT as 
described in §2.1, but which permits constraint tying is described here.  Versions of Optimality 
Theory that incorporate constraint tying do so for two possible reasons.  The first of these 
reasons was initially proposed as a possible account of producing variation within Optimality 
Theoretic grammars, particularly with effects such as emergence of the unmarked and context 
effects.  The second possibility is that tied constraints can produce the effects of a logical OR 
within the grammar.  The general utility function is given in (4).  We call it Ut for ‘tied’ to 
distinguish it from the function for strict OT, although the equation is identical.  The changes 
come in the way we define the coefficients that figure into the constraint ranking, given in (5). 
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In order to achieve constraint tying, the possibility for two successive constraint weights being 
equal must be allowed.  Equation (5) says that for most constraints, we define successive 
constraints as we would for strict Optimality Theory, as equal to (or greater than) the sum of all 
lower ranked constraints.  However, this definition of the ai’s leaves open the possibility that a 
constraint may be tied in utility to the one immediately preceding it in the ranking.  This 
formulation only tells us that a constraint, as it is added to the ranking, may be ranked equal to 
the previous one in the ranking.  This particular model does not specify any limit on the number 
of constraints that may be ranked equally.  To prevent this from happening, we would require 
another constraint, perhaps that ai≠ai-2.  Without this additional constraint, this clearly can be a 
way to reduce the maximum utility (numerical size) of the grammar by not requiring non-
interacting constraints to be ranked with respect to each other, particularly for very highly 
constraints that are never violated in the working language, or for very low ranked constraints 
that are never satisfied, to be ranked equally and contribute less to the ratio between the highest 
ranked constraint and the lowest.  Reducing the unused portions of the grammar should result in 
simpler computation of winning candidates by placing more emphasis on constraints that are 
actually decisive. 
 
2.2.2. Multiple violations 
A model of Optimality Theory that satisfies the first and third requirements described in §2.1 for 
strict OT, but that allows multiple violations of constraints is described in this section.  Multiple 
violations of a constraint, or gradient effects, arise typically in certain well-formedness 
constraints such as those governing right- or left-headedness.  If a constraint receives a violation 
for each syllable, for instance, as it moves into a word, it may be recorded in an analysis as 
receiving multiple violations if it moves beyond the first syllable.  Distinguishing the accent 
placement, for instance between the first syllable versus the second or later syllables then, can be 
easily obtained from single violations, but distinguishing between second and third syllable is 
often achieved through allowing multiple violations.  John McCarthy (2002) specifically rejects 
such gradient effects, but since the process is common in existing models of a wide range of 
phenomena, we describe it here. 

 = k  − i 1  and constraint tied 
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 Achieving multiple violations cannot be achieved through the use of an indicator 
variable.  Rather, another variable, here labeled, zj, is an ordinal variable.  For constraints that 
can achieve only success or failure, nothing has changed except the label, since not all 
constraints need to be gradient.  However, for constraints that achieve multiple violations, values 
of two, three, four, or whatever whole number is needed can be achieved.  Our utility function 
now looks like (6). 
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Because we are no longer considering a simple indicator variable, we once again need to 
reconsider our coefficient ranking.  In order to keep the strict ranking approach of previous 
models, we need to adjust our ai values to accommodate multiple violations of a constraint.  To 
guarantee that higher ranked constraints will always have a higher utility value than constraints 
that can have multiple violations, we need to consider the maximum utility value of the 
constraint in question given complete success.  Our indicator variables allowed for a zero value if 
the constraint failed to be satisfied and a value of one if it succeeds. Now, since there are 
different degrees of failure, there must also be different degrees of success.  Negative numbers 
are not allowed, so one way around this is to determine the maximum number of violations that 
are permitted that are still useful in the grammar.  If an accent, for example, appears only on the 
last three syllables of a word, for instance, then three violations guarantee failure.  There is no 
need for a fourth degree.  This maximum number of violations achieves a zero value, and 
complete success, or no violations, receives this ordinal value in the constraint ranking.  The 
maximum value will be something learned in language acquisition.  The equation for this scheme 
is given in (7) and (8).  We choose (7) if we wish to consider the maximum total violations 
(regardless of where the usefulness of such violations ends) which depends entirely upon 
observation, and (8) if mj represents the maximal decisive violations associated with each 
constraint, something that would require a deeper understanding of the grammar.  This value 
may indeed be one (the minimum value), and we return to strict OT if this were true for all 
constraints. 
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One of the weaknesses of such a model is that it increases the size and complexity of the 
grammar.  The value of utilities for all successive constraints must be ranked higher to maintain 
the constraint ranking.  The same effect might conceivably be achieved by splitting up the 
constraints, just as we do for place feature faithfulness and as would be done in a statistical 
analysis of an ordinal variable, into pieces labeled with indicator variables and ranking these 
successively, one after another (Kleinbaum, et al., 1998).  It also forces us to establish an 
additional relationship between the constraints to ensure that the constraint with three violations 
is not ranked above the one with two violations.  This approach, of course, increases our value 
for N.  Constraint conjunction also represents a problem for constraints with multiple violations.  
Would conjoined constraints reduce to I0 or maintain the gradience of the bare constraint. 



It is certainly conceivable that variations on Optimality Theory exist that incorporate 
features of both tied constrains and multiple violations of constraints.  Combining features of 
both constraint tying and multiple violations would not change our general utility function much, 
as we’ve seen, but would change dramatically the way in which we define our coefficients, 
particularly for tied, gradient constraints.  I leave these variations to the imagination of the 
reader. 
 
2.3. Stochastic Optimality Theory 
Stochastic OT was introduced as yet another method of handling variation in a synchronic 
grammar.  Constraint tying was proposed originally as a way of achieving variation, but in the 
end, this technique only permits lower ranked constraints to be the deciding factor, leading to 
variation which is ultimately contextual.  Stochastic OT permits variation which is truly random.  
The mathematical model of a stochastic model of Optimality Theory is given in (9). 
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The model given in (9) contains the usual features of strict OT, indicator variables for each 
constraint, and a coefficient ai for the constraint ranking.  The second term biYj of the coefficient 
is the stochastic portion of the grammar, which is irrelevant if the constraint itself is not satisfied.  
Each Yj represents a random variable associated with each constraint.  Each Yj takes on the value 
of one with probability pj and zero with probability (1- pj)  When the random variable Yj achieves 
a value of one, then the value of the coefficient bi adds to the value of the utility function.  (We 
assume here that the random variable is evaluated once for every input, and not once for each 
candidate individually.)  A model for the strict version of OT can be achieved when all the pj’s 
are very close to or equal to zero, as this would leave only the bare constraint ranking.  However, 
when we change the value of some of the pj’s, constraint permeability appears.   

If the magnitude of the coefficient is free, the degree of permeability depends upon the 
magnitude of the coefficient of the random variable in relation to the value of the constraint 
itself.  Values of bi significantly smaller (or larger) than the corresponding ai permit contextual 
variation with random variability, as a combination of smaller ranked constraints may combine 
to produce a utility greater than the single constraint alone.  Values of bi that are equal to the 
corresponding ai will cause variation with the constraint ranked immediately above it.  When we 
combine this with a pj value equal to one, we regain the tied constraints model.  The ability to 
recover several other models here is a strong plus for this model.  This is straightforward for 
indicator variable constraints, but becomes more complicated for constraints that permit multiple 
violations, and I will not address those complications here. 

In order to achieve maximum learnability, we need to gain maximum control of the theory; 
we would like to reduce the variation in the model to only what is needed to account for 
behaviour.  Ideally, allowing the value of bi to depend directly on the corresponding ai, and 
bi+ai≈ai+1, so that constraint permeability is possible in only one direction, and the values of the 
bi’s do not need to be acquired separately. This would permit constraint stochastic effects only 
with two successively ranked constraints.  However, this restriction leaves open certain 
theoretical questions.  When we consider small segments of a grammar in analyzing a particular 
behaviour of interest, it is not difficult to get two constraints that are varying with each other to 
be ranked together.  The question that remains, however, is will these constraints remain 



consecutively ranked when the full grammar is considered?  Until complete Optimality Theoretic 
grammars are developed, and analyzed, that are meant to account for an entire language, 
complete with variation, what restrictions can be placed on the stochastic portion of this model 
remains to be seen. 
 
3. Implications of the models 
These mathematical models of Optimality Theory have implications for linguistic theory.  Some 
of these implications have already been addressed above, but in this section, I would like to 
highlight these and others relating to some specific theoretical issues. 
 
3.1. Universal Grammar 
Universal Grammar is a central feature of modern linguistic theory.  These models have a lot to 
say about what UG would have to contain with respect to Optimality Theory.  We saw in (3), 
given in §2.1, how our constraint ranking must be accounted for in our utility function.  Given 
that multiple violations and tied constraints are not a feature of this version of OT, the values of 
the constraint ranking for our utility function, and the utility function itself can be listed in UG.  
A speaker would have to acquire the permutation of constraints so that the coefficients can be 
associated with the correct utility values. The coefficients themselves, however, may be 
contained in UG since, given a fixed number of constraints, under this model the value of each 
coefficient would be invariant across languages.  This would also be true of the stochastic model 
given here if we assume that the bi’s are dependent upon the ai’s and that pj=0 is the default for 
all constraints initially. 
 On the other hand, as we’ve seen, if we assume that all constraints (and their binary 
conjunctions) are listed in UG, we have a very large grammar which to work from. This is 
powerful, but unwieldy.  Models of UG that permit constraint learning can help to minimize the 
size of a grammar significantly.  Humans are known to have difficulty managing small and large 
numbers simultaneously, so reducing a grammar to its minimal parts could be advantageous. 
 
3.2. Language acquisition 
These models address several features relevant to language acquisition.  Assuming that UG 
conforms to the strict version of OT described in §2.1, language acquisition would be at its 
simplest of the four models.  A speaker would have only to acquire the constraint ranking that 
maximized the utility function.  Other models present more difficulty for language acquisition.  
That in itself should not be interpreted to mean that they are wrong as each has its own benefits. 
 The tied constraints model has the benefit of reducing the final grammar almost as much 
as acquiring constraints reduces it.  However, if a tied constraints model is accurate, then the 
values of the coefficients in the model must be acquired as well.  Because of the possibility of 
constraint tying, the coefficients are no longer regular.   

Multiple constraint rankings likewise have additional features that need to be acquired, 
such as the maximal number of violations.  This occurs regardless of whether the speaker is 
merely tallying, or actually calculating the number that is useful.  This increases the numerical 
size of the grammar but reduces the number of variables that need to be manipulated.  As we’ve 
seen, trading off features of UG and additional complexity in acquisition may lead to models of 
grammar that are ultimately easier to manipulate once learned. 
 The stochastic model presents the greatest challenge for learning.  I assume here that the 
pj values for the probability of a constraint varying begin with a value of zero.  Before the 



variation can be considered the constraint ranking must be established.  If we assume that 
irregularities are established after regular behaviours, then it is clear that once the constraint 
ranking is established, the pj values can be adjusted where needed to account for nuances.  I 
assume for the moment that the probabilities would be adjusted via Bayesian principles, and if 
they are established only after the constraint ranking, it is reasonable to predict that this portion 
of the grammar may be adjustable over time, even while the constraint ranking itself remains 
fixed. 
 An alternative approach to the stochastic model is that the stochastic portion is the source 
of probabilistic behaviour, and that these probabilities diverge from zero very early, only to have 
the constraint ranking imposed upon a purely probabilistic model at a later date.  More research 
into language acquisition will have to be done to determine which of these is a more accurate 
model of learning behaviour.  Without the constraint ranking, however, the grammar is no longer 
Optimality Theoretic. 
 
3.3. Multiple constraint rankings 
As we mentioned in the discussion of the model of strict OT, multiple constraint rankings are 
possible for a given language.  The theory tells us that constraints must be ranked, but that 
constraints that don’t interact in a given language may be ranked in one order in one speaker’s 
grammar, but ranked in a slightly different order in another’s.  A model that permits tied 
constraints, as described in this paper, does not require non-interacting constraints to be tied.  
Such a requirement would help reduce the size of the grammar and reduce or eliminate 
differences in the grammars across speakers of a single language.  More than these minor 
variations, however, it may be also be possible to produce identical linguistic outputs but 
appealing to very different constraint interactions (McCall, 2002).  These models do not make 
any predictions about how this might occur or how the utility values may differ.  However, it 
should be possible to test in each case how accurate the predictions of each model are by 
conducting experimental studies in the field, and modeling the behaviour of each model to 
determine which values for pj work best, and which models match the study’s behaviour most 
closely.  If it can be shown by these or other means that multiple rankings exist, the notion of 
language change through constraint reranking becomes, at the least, more complex than currently 
envisioned. 
 
3.4. Linearity and nonlinearity in OT 
The mathematical models described here also suggest another feature of Optimality Theory, 
which is a strong linear quality.  While there is some allowance for constraint conjunction, the 
variables for the conjoined constraints are also zero or one.  Gradience effects, while linear in 
individual constraints are the first suggestion of possible nonlinearity in Optimality Theory when 
we begin to consider conjoining them.  However, nonlinearities are concealed in OT in the guise 
of output-output faithfulness constraints and sympathy theory.  Sympathy theory, in particular, is 
language specific, and amounts to a clever way of masking constraint interaction.  As we have 
seen from the discussion of gradience constraints that gradience, as difficult as it is for 
Optimality Theory, comes with certain advantages, one of these being to reduce the overall 
number of possible constraints.  Likewise, by permitting more complicated interactions among 
constraints, further reductions may be possible, at the cost of additional complexity in the model. 
 
 



3.5.Dynamics 
Optimality Theory postulates two functions, EVAL and GEN.  Most of this paper has been 
dedicated to discussing the EVAL function.  However, the analysis of the EVAL function may 
bear directly upon an analysis of the GEN function in OT.  GEN is the function which generates 
candidates for EVAL to evaluate, and it is usually seen as generating an infinite number of 
candidates which EVAL considers in parallel.  However, a human brain cannot, in fact, evaluate 
an infinite number of candidates simultaneously. This is another problem that has been referred 
to as the problem of the infinities.  A mathematical model of EVAL predicts that there will be 
some minimal utility value that can be a winning candidate.   By allowing the two functions to 
interact, we can make GEN more efficient, and more difficult to modify once the grammar has 
been established.  By preventing GEN from providing candidates to EVAL that have no chance 
of succeeding, such a model may provide another explanation for why second language 
acquisition is so difficult, since GEN may not be capable of even supplying winning candidates. 
 The stochastic model also has something to say about language dynamics over a 
speaker’s lifetime, and for language change.  If the value of pj is adjusted in a Bayesian fashion 
over the life of the speaker, changes in the linguistic environment can be learned and the 
language of the speaker adjusted, even while the constraint ranking for that speaker remains 
fixed.  Within a limited domain, new speakers might perceive the constraint ranking as already 
adjusted—even when variation still exists.  We need only have some pj>0.5 to cause a change in 
the constraint ranking, since in language acquisition we assume that pj would be adjusted 
upwards from zero. 
 
4. Conclusions and future research 
One can see that the mathematical models of Optimality Theory described here show in detail 
some of the theoretical consequences that variations on a basic theme can have.  A strict model 
of OT has benefits that arise from its simplicity, but it forces grammars under the assumption of 
UG to be extremely large in relation to other models.  The stochastic version of Optimality 
Theory shows the greatest promise for maintaining behavioural features of other models, and still 
being capable of adding new features to tackle linguistic variation across speakers, within a 
speaker’s grammar over time and through the process of language change.  Such mathematical 
models in general provide a concrete means of constraining aspects of the theory and using OT 
in other fields of language modeling such as natural language processing and producing 
simulations of studies to better determine whether the model proposed can actually produce the 
observed behaviours.  Furthermore, the models help us see best where theoretical tools such as 
sympathy theory and other features introduce nonlinearities into a model that is otherwise very 
linear.  This allows us to begin asking questions about these features if they do not point in a new 
direction for linguistic theory beyond OT. 
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