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Limits in 2 or more variables 
Vector-Valued Functions (Domain/sketching) 
Vector Fields 
Vector-Valued Functions (Derivatives/Integrals) 
 
A note about class times: 
When I was assigned to teach this course and made the syllabus, SIS had the correct times in the system: 
6-8:15 MTWR. The current listing of 6-7:50 is not correct. It is not equivalent to a full semester lecture 
times. 
 
If we were meeting in a regular semester for 15 weeks we would meet for around 2 hours (such as 6-
7:50) two days per week. We are meeting 4 days per week, so that cuts the number of weeks required in 
half or 7.5 weeks. We don’t have 7.5 weeks, though, we have 6.  That leaves us 6 lectures short (1.5 x 4 
classes per week), or around 12 hours short. That means we would need 2 additional hours per week. 
We could meet a 5th day, or spread those hours over the other 4 days at roughly half-an-hour extra per 
meeting: which puts us around 8:15 instead of 7:50. The number of lecture hours we meet is required 
for maintaining accreditation, and to make sure we are able to cover all the required material. If we 
don’t maintain the 8:15 projected end time, then I would probably need to make you responsible for 
learning some material on your own, without being able to lecture on it at all. 
 
Limits in 2 or more variables. 

lim
(𝑥,𝑦)→(𝑎,𝑏)

𝑓(𝑥, 𝑦) = 𝐿 

 
If for every number 𝜀 > 0 there exists a corresponding 𝛿 > 0 such that if (𝑥, 𝑦) is in the domain and 

√(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 < 𝛿, then |𝑓(𝑥, 𝑦) − 𝐿| < 𝜀 
 
Example. 

lim
(𝑥,𝑦)→(1,2)

5𝑥3 − 𝑥2𝑦2 = 5(1)3 − (1)2(2)2 = 5 − 4 = 1 

 
Example. 

lim
(𝑥,𝑦)→(0,0)

𝑥 − 𝑦

√𝑥 − 𝑦
= 

Let 𝑥 − 𝑦 = 𝑢 

lim
𝑢→0

𝑢

√𝑢
= lim

𝑢→0
√𝑢 = 0 

 
Example. 

lim
(𝑥,𝑦)→(0,0)

sin(𝑥2 + 𝑦2)

𝑥2 + 𝑦2
= 

Let 𝑢 = 𝑥2 + 𝑦2, or 𝑟2 = 𝑥2 + 𝑦2 
 

lim
𝑢→0

sin(𝑢)

𝑢
= lim

𝑢→0

cos(𝑢)

1
= 1 

L’Hopital’s rule does not apply to two variable cases, only one-variable cases. 
 



Example. 

lim
(𝑥,𝑦)→(0,0)

𝑥𝑦

𝑥2 + 𝑦2
 

 
The difficult with multivariable limits is that we need to approach the origin from every possible 
direction to prove that the limit is the same all the time.  
 
Try various paths to the origin: 

1. 𝑥 = 0 

lim
𝑦→0

0𝑦

0 + 𝑦2
= lim

𝑦→0

0

𝑦2
= lim

𝑦→0
0 = 0 

2. 𝑦 = 0 

lim
𝑥→0

𝑥(0)

𝑥2 + 0
= lim

𝑥→0

0

𝑥2
= lim

𝑥→0
0 = 0 

 
3. 𝑦 = 𝑥 

lim
𝑥→0

𝑥(𝑥)

𝑥2 + 𝑥2
= lim

𝑥→0

𝑥2

2𝑥2
= lim

𝑥→0

1

2
=

1

2
 

 
The limit is DNE 
 
Let’s try polar coordinates: 
 

lim
𝑟→0

𝑟 cos 𝜃  𝑟 sin 𝜃

𝑟2
= lim

𝑟→0

𝑟2 cos 𝜃 sin 𝜃

𝑟2
= lim

𝑟→0

cos 𝜃 sin 𝜃

1
= cos 𝜃 sin 𝜃 

 
The value of the expression will change as the value of 𝜃 changes. 
 
Since 𝜃 is left behind after arriving at the origin, the limit has different values depending on the path one 
takes, and therefore the limit does not exist (DNE) 
 
Choosing the critical path: 
Choose a path to origin that will allow the denominator to simplify as much as possible. 
 

lim
(𝑥,𝑦)→(0,0)

𝑥𝑦2

𝑥2 + 𝑦4
 

 
The idea is to make a substitution so that afterwards, the powers in the denominator are the same. 

𝑥2 = 𝑦4 
𝑥 = 𝑦2 

 
Substitute 

𝑥 = 𝑘𝑦2 
 

lim
𝑦→0

𝑘𝑦2𝑦2

(𝑘𝑦2)2 + 𝑦4
= lim

𝑦→0

𝑘𝑦4

𝑘2𝑦4 + 𝑦4
= lim

𝑦→0

𝑘𝑦4

𝑦4(𝑘2 + 1)
= lim

𝑦→0

𝑘

(𝑘2 + 1)
=

𝑘

(𝑘2 + 1)
 

 
This limit does not exist. 



Consider the previous problem: 

lim
(𝑥,𝑦)→(0,0)

𝑥𝑦

𝑥2 + 𝑦2
 

 
The critical path is 𝑦 = 𝑘𝑥 

lim
𝑥→0

𝑥(𝑘𝑥)

𝑥2 + (𝑘𝑥)2
= lim

𝑥→0

𝑘𝑥2

𝑥2 + 𝑘2𝑥2
= lim

𝑥→0

𝑘𝑥2

𝑥2(1 + 𝑘2)
= lim

𝑥→0

𝑘

(1 + 𝑘2)
=

𝑘

(1 + 𝑘2)
 

 
This is also DNE and is consistent with the polar substitution that we did. 
 

lim
(𝑥,𝑦)→(0,0)

𝑥4 − 𝑦4

𝑥2 + 𝑦2
 

 
Polar coordinates 
 

lim
𝑟→0

𝑟4 cos4 𝜃 − 𝑟4 sin4 𝜃

𝑟2
= lim

𝑟→0

𝑟4(cos4 𝜃 − sin4 𝜃)

𝑟2
= lim

𝑟→0
𝑟2(cos4 𝜃 − sin4 𝜃) = 0 

 
In a three-variable problem: 
One way is to reduce the problem to the two-variable case, and then apply our strategies for the two-
variable. 
 
May also be able to apply spherical coordinates 
 

lim
(𝑥,𝑦,𝑧)→(0,0,0)

𝑥𝑦𝑧

𝑥2 + 𝑦2 + 𝑧2
 

 

lim
𝜌→0

𝜌 cos 𝜃 sin 𝜙 𝜌 sin 𝜃 sin 𝜙 𝜌 cos 𝜙

𝜌2
= lim

𝜌→0

𝜌3 cos 𝜃 sin 𝜙 sin 𝜃 sin 𝜙 cos 𝜙

𝜌2
= 

 
lim
𝜌→0

𝜌 cos 𝜃 sin 𝜙 sin 𝜃 sin 𝜙 cos 𝜙 = 0 

 
Vector-Valued Functions (13.1/3.1) 
Introduced these when we did lines in space 

𝑟(𝑡) = 〈𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)〉 
 
 
Domain:  
Can express in traditional interval terms in just one variable t. 
Find the domain of each component of the vector separately and then find the intervals where all the 
components are defined. 
 

𝑟(𝑡) = 〈
𝑡

𝑡 − 2
, √𝑡, sin (𝑡)〉 

 
x-direction: 𝑡 ≠ 2 
y-direction: 𝑡 ≥ 0 
z-direction: t is any real number 



 
Domain: [0,2) ∪ (2, ∞) 
 
It may be helpful to graph the intervals on one or more number lines to help figure out where all of them 
are true. 
 
Sketching curves in three dimensions 
 

𝑟(𝑡) = 〈2 cos 𝑡 , 2 sin 𝑡 , 𝑡〉 
 
A helix is essentially a slinky. 
 
Make sure you graph (for a helix) at least two turns around the circle – 0 to 4pi or -2pi to 2pi 
 
Build a table of values, plot the individual points, connect the dots in order 
 

𝑡 𝑥 𝑦 𝑧 
−2𝜋 2 0 −2𝜋 

−
3𝜋

2
 

0 2 
−

3𝜋

2
 

−𝜋 −2 0 −𝜋 

−
𝜋

2
 0 −2 −

𝜋

2
 

0 2 0 0 
𝜋

2
 0 2 𝜋

2
 

𝜋 −2 0 𝜋 
3𝜋

2
 

0 −2 3𝜋

2
 

2𝜋 2 0 2𝜋 
 
Vector Fields (16.1/6.1) 
Has a vector associated with every point in the plane or in space. 
 

�⃗�(𝑥, 𝑦) = 〈𝑃(𝑥, 𝑦), 𝑄(𝑥, 𝑦)〉 
 

�⃗�(𝑥, 𝑦) = 〈−𝑦, 𝑥〉 
 

𝑥 𝑦 〈−𝑦, 𝑥〉 
0 0 〈0,0〉 
1 0 〈0,1〉 
0 1 〈−1,0〉 

−1 0 〈0, −1〉 
0 −1 〈1,0〉 
1 1 〈−1,1〉 

−1 1 〈−1, −1〉 
−1 −1 〈1, −1〉 
1 −1 〈1,1〉 



2 0 〈0,2〉 
0 2 〈−2,0〉 

 
https://www.geogebra.org/m/QPE4PaDZ 

 
 
 
Calculus on Vector-Valued Functions (like the helix) 
 
When you take derivatives (or integrals) on vector-valued functions, you do them component by 
component. 
 

𝑟(𝑡) = 〈2 cos 𝑡 , 2 sin 𝑡 , 𝑡〉 
𝑟′(𝑡) = 〈−2 sin 𝑡 , 2 cos 𝑡 , 1〉 

∫ 𝑟(𝑡)𝑑𝑡 = 〈2 sin 𝑡 + 𝐶1, −2 cos 𝑡 + 𝐶2,
𝑡2

2
+ 𝐶3〉 

 
 
 
 

https://www.geogebra.org/m/QPE4PaDZ

