
7/18/2022 
 
Constructing and using power series 
Taylor Series 
 
Note on the second exam… there is a change to the calendar. 
We will meet for lecture on Wednesday to finish the Chapter 7 material, if necessary, and do review 
(which we won’t have time for today). I will open the exam when the session finishes. Then students will 
have until Friday to complete the test. 
 
Schedule resumes as normal on Monday. 
 
Constructing Power Series 
Start with the formula for the sum of a geometric series 
 

∑𝑎(𝑟𝑛)

∞

𝑛=0

=
𝑎

1 − 𝑟
 

For |𝑟| < 1 
 

∑𝑎(𝑥𝑛)

∞

𝑛=0

=
𝑎

1 − 𝑥
 

 
 
For example. 

𝑓(𝑥) =
3𝑥2

1 − 2𝑥
 

 
What is r? What is a? 

𝑟 = 2𝑥, 𝑎 = 3𝑥2 
 

3𝑥2

1 − 2𝑥
= ∑3𝑥2(2𝑥)𝑛

∞

𝑛=0

= ∑3𝑥2(2𝑛𝑥𝑛)

∞

𝑛=0

= ∑3(2𝑛)𝑥𝑛+2
∞

𝑛=0

 

 
We would have to test for convergence (like we did last time) to see where the function is defined. 
 
The constant in the denominator must be 1 (we may have to rescale if the constant is not 1). Also the 
formula has a minus sign in it, so if the denominator has a + sign, then we have to rewrite so that we 
have a minus sign. 
 
Example. 

𝑓(𝑥) =
𝑥

7 + 𝑥2
=

𝑥

7 − (−𝑥2)
=

𝑥 (
1
7)

1
7
(7 + 𝑥2)

=

𝑥
7

1 +
𝑥2

7

=

𝑥
7

1 − (−
𝑥2

7 )
 

 
We want to write this as a power series. 



 

∑𝑎(𝑟𝑛)

∞

𝑛=0

=
𝑎

1 − 𝑟
 

 

𝑟 = (−
𝑥2

7
) , 𝑎 =

𝑥

7
 

 

𝑥

7 + 𝑥2
= ∑(

𝑥

7
)(−

𝑥2

7
)

𝑛∞

𝑛=0

= ∑
𝑥

7
(−1)𝑛(𝑥2𝑛) (

1

7
)
𝑛∞

𝑛=0

= ∑(−1)𝑛 (
1

7
)
𝑛+1

𝑥2𝑛+1
∞

𝑛=0

 

 
 

But now what if we have a function like 𝑓(𝑥) =
𝑥

(1+4𝑥)2
? 

 

∑𝑎(𝑥𝑛)

∞

𝑛=0

=
𝑎

1 − 𝑥
 

 
The solution here (if the denominator is raised to a power) is to take derivatives of our original formula. 
 

𝑓(𝑥) =
𝑎

1 − 𝑥
= 𝑎(1 − 𝑥)−1 = ∑𝑎(𝑥𝑛)

∞

𝑛=0

 

 

𝑓′(𝑥) = (−1)𝑎(1 − 𝑥)−2(−1) = 𝑎(1 − 𝑥)−2 =
𝑎

(1 − 𝑥)2
= ∑𝑎𝑛(𝑥𝑛−1)

∞

𝑛=1

= ∑𝑎(𝑘 + 1)(𝑥𝑘)

∞

𝑘=0

 

 

𝑓′′(𝑥) = −2𝑎(1 − 𝑥)−3(−1) =
2𝑎

(1 − 𝑥)3
= ∑𝑎𝑛(𝑛 − 1)(𝑥𝑛−2)

∞

𝑛=2

= ∑𝑎(𝑘 + 2)(𝑘 + 1)(𝑥𝑘)

∞

𝑘=0

 

 

𝑓′′′(𝑥) =
6𝑎

(1 − 𝑥)4
= ∑𝑎𝑛(𝑛 − 1)(𝑛 − 2)(𝑥𝑛−3)

∞

𝑛=3

= ∑𝑎(𝑘 + 3)(𝑘 + 2)(𝑘 + 1)(𝑥𝑘)

∞

𝑘=0

 

 
Now, the issue that we usually start power series with n=0, not n=3. 
 
Re-indexing. Replace n-1=k implies n=k+1 
 

∑𝑎𝑛(𝑥𝑛−1)

∞

𝑛=1

= ∑ 𝑎(𝑘 + 1)(𝑥𝑘+1−1)

∞

𝑘+1=1

= ∑𝑎(𝑘 + 1)(𝑥𝑘)

∞

𝑘=0

 

 
Replace n-2 = k or n=k+2 
 

∑𝑎𝑛(𝑛 − 1)(𝑥𝑛−2)

∞

𝑛=2

= ∑ 𝑎(𝑘 + 2)(𝑘 + 2 − 1)(𝑥𝑘+2−2)

∞

𝑘+2=2

= ∑𝑎(𝑘 + 2)(𝑘 + 1)(𝑥𝑘)

∞

𝑘=0

 



 
Replace n-3=k or n=k+3 
 

∑𝑎𝑛(𝑛 − 1)(𝑛 − 2)(𝑥𝑛−3)

∞

𝑛=3

= ∑ 𝑎(𝑘 + 3)(𝑘 + 3 − 1)(𝑘 + 3 − 2)(𝑥𝑘+3−3)

∞

𝑘+3=3

 

 

= ∑𝑎(𝑘 + 3)(𝑘 + 2)(𝑘 + 1)(𝑥𝑘)

∞

𝑘=0

 

 
For whatever power you have over the entire denominator, as long as it’s an integer, you can generate a 
power series to suit it by taking derivatives of the based geometric series formula. 
 

Example: we have a function like 𝑓(𝑥) =
𝑥

(1+4𝑥)3
. We want to make a power series of it. 

 
The formulas we need: 
 

2𝑎

(1 − 𝑟)3
= ∑𝑎(𝑘 + 2)(𝑘 + 1)(𝑟𝑘)

∞

𝑘=0

 

 
What are a and r? 

𝑟 = −4𝑥 

2𝑎 = 𝑥 → 𝑎 =
𝑥

2
 

 

𝑓(𝑥) =
𝑥

(1 + 4𝑥)3
= ∑

𝑥

2
(𝑘 + 2)(𝑘 + 1)(−4𝑥)𝑘

∞

𝑘=0

= ∑(−1)𝑘(4𝑘)
1

2
(𝑘 + 2)(𝑘 + 1)𝑥𝑘+1

∞

𝑘=0

 

 

4𝑘

2
=
22𝑘

2
= 22𝑘−1 

 

∑(−1)𝑘22𝑘−1(𝑘 + 2)(𝑘 + 1)𝑥𝑘+1
∞

𝑘=0

 

 

Suppose I want to differentiate 𝑓(𝑥) =
𝑥

(1+4𝑥)3
? 

I would need a quotient with an embedded chain rule. 
 
 Or what if I wanted to integrate it?  
I would need to partial fractions with three terms. And then u-sub to integrate the results. 
 
But in the form of a power series, differentiating is just a power rule. And integrating is also just a power 
rule. 
 



𝑓(𝑥) =
𝑥

(1 + 4𝑥)3
= ∑(−1)𝑘22𝑘−1(𝑘 + 2)(𝑘 + 1)𝑥𝑘+1

∞

𝑘=0

 

 

𝑓′(𝑥) = ∑(−1)𝑘22𝑘−1(𝑘 + 2)(𝑘 + 1)(𝑘 + 1)𝑥𝑘
∞

𝑘=0

 

 

∫𝑓(𝑥)𝑑𝑥 = ∫
𝑥

(1 + 4𝑥)3
𝑑𝑥 = ∫∑(−1)𝑘22𝑘−1(𝑘 + 2)(𝑘 + 1)𝑥𝑘+1

∞

𝑘=0

𝑑𝑥 

 

= ∑∫(−1)𝑘22𝑘−1(𝑘 + 2)(𝑘 + 1)𝑥𝑘+1𝑑𝑥

∞

𝑘=0

= ∑
(−1)𝑘22𝑘−1(𝑘 + 2)(𝑘 + 1)𝑥𝑘+2

𝑘 + 2

∞

𝑘=0

+ 𝐶 

 

= ∑(−1)𝑘22𝑘−1(𝑘 + 1)𝑥𝑘+2
∞

𝑘=0

+ 𝐶 

 
 

So, if we have 𝑓(𝑥) =
3𝑥2

2𝑥−1
= −

3𝑥2

−1(2𝑥−1)
= −

3𝑥2

1−2𝑥
 

 
Two special cases of functions that are not themselves rational, but which have rational derivatives that 
we can use this method for generating power series for them. 
 
The two function are 𝑓(𝑥) = ln(𝑥) , 𝑔(𝑥) = arctan(𝑥) 

𝑓′(𝑥) =
1

𝑥
, 𝑔′(𝑥) =

1

1 + 𝑥2
 

 
The general procedure we use to generate a power series is: 
 

1) Take the derivative to obtain a ration function 
2) Make a power series of the rational expression 
3) Integrate the power series to obtain the power series for the original function. 

 
Let’s find a power series for the ln(x) function. 
 

1) 𝑓(𝑥) = ln(𝑥) , 𝑓′(𝑥) =
1

𝑥
 

 
Rewrite to shift the center. 
 

𝑓′(𝑥) =
1

𝑥 − 1 + 1
=

1

1 + (𝑥 − 1)
=

1

1 − (1 − 𝑥)
 

 
𝑎 = 1, 𝑟 = (1 − 𝑥) = (−1)(𝑥 − 1) 

 
2) Make the power series. 



∑𝑎(𝑟𝑛)

∞

𝑛=0

=
𝑎

1 − 𝑟
 

 

1

𝑥
=

1

1 − (1 − 𝑥)
= ∑1((−1)(𝑥 − 1))

𝑛
∞

𝑛=0

= ∑(−1)𝑛(𝑥 − 1)𝑛
∞

𝑛=0

 

 
3) Do the antiderivative to get back to the original function. 

ln(𝑥) = ∑
(−1)𝑛(𝑥 − 1)𝑛+1

𝑛 + 1

∞

𝑛=0

+ 𝐶 

 
When x=1, what is ln(1)? The constant is 0 because the center of the function at x=1, is also 0. 
 

ln(𝑥) = ∑
(−1)𝑛(𝑥 − 1)𝑛+1

𝑛 + 1

∞

𝑛=0

 

 
 
Taylor Series. 
A method for generating power series for functions that cannot be expressed as rational functions (or its 
derivatives). This includes things like trig functions, and exponential functions, etc. Can also include 
fractional exponents of x. 
When the Taylor series is centered at 0, this is often referred to as a Maclaurin series. But they both 
follow the same derivations other than the center value. 
 
The Taylor uses derivatives of the original function to approximate it. The first term is the value of the 
original function at the center of our expansion. 𝑓(𝑐) 
 
The next term in the Taylor series is based on the linear approximation to the curve at that point (based 
on the first derivative).  𝑓′(𝑐)(𝑥 − 𝑐) 
 
We continue in this process taking derivatives, approximate the value and centered at the point x=c. 
𝑓′′(𝑐)(𝑥−𝑐)2

2
 

 
Continue in this vein… 
 

∑
𝑓(𝑛)(𝑐)(𝑥 − 𝑐)𝑛

𝑛!

∞

𝑛=0

=
𝑓(𝑐)(𝑥 − 𝑐)0

0!
+
𝑓′(𝑐)(𝑥 − 𝑐)1

1!
+
𝑓′′(𝑐)(𝑥 − 𝑐)2

2!
+
𝑓′′′(𝑐)(𝑥 − 𝑐)3

3!
+ ⋯ 

 
Suppose I want to generate a Taylor series for 𝑓(𝑥) = 𝑒𝑥 
Use all n=6, c=0, then generate a general formula for the Taylor series. 
 
 

𝑛 𝑛! 𝑓(𝑛)(𝑥) 𝑓(𝑛)(𝑐) (𝑥 − 𝑐)𝑛 𝑓(𝑛)(𝑐)(𝑥 − 𝑐)𝑛

𝑛!
 

0 1 𝑒𝑥 1 1 1 



1 1 𝑒𝑥 1 𝑥 𝑥 

2 2 𝑒𝑥 1 𝑥2 𝑥2

2
 

3 6 𝑒𝑥 1 𝑥3 𝑥3

6
 

4 24 𝑒𝑥 1 𝑥4 𝑥4

24
 

5 120 𝑒𝑥 1 𝑥5 𝑥5

120
 

6 720 𝑒𝑥 1 𝑥6 𝑥6

720
 

 

Taylor polynomial is an approximation of the Taylor series, 𝑃6(𝑥) = 1 + 𝑥 +
𝑥2

2
+

𝑥3

6
+

𝑥4

24
+

𝑥5

120
+

𝑥6

720
. 

 

The general formula for the Taylor (Maclaurin) series for 𝑒𝑥 centered at x=0, is ∑
𝑥𝑛

𝑛!
∞
𝑛=0  

 

What if I wanted to create a power series for 𝑒𝑥
2
?  Rather than generating the formula from scratch, I 

can just replace x with 𝑥2 in my 𝑒𝑥 series. 
 

𝑒𝑥
2
= ∑

(𝑥2)𝑛

𝑛!

∞

𝑛=0

= ∑
𝑥2𝑛

𝑛!

∞

𝑛=0

 

 
Now, if I want to integrate this function, I can.  I can’t integrate the original version, but I can integrate 
the power series. 
 
Error term. 
 
The error for a Taylor series is based on the next term in the series.  

𝑅𝑛(𝑥) =
𝑓(𝑛+1)(𝑧)

(𝑛 + 1)!
(𝑥 − 𝑐)𝑛+1 =

max|𝑓𝑛+1(𝑥)| (𝑥 − 𝑐)𝑛+1

(𝑛 + 1)!
 

 

The max value or the expression 𝑓(𝑛+1)(𝑧) is interpreted as the largest magnitude value of this 
derivative on some interval of interest (say for an integral) or for some range of values like ±1 from the 
center. 
 
Suppose I want to generate a Taylor series for 𝑓(𝑥) = 𝑒𝑥 
Use all n=4, c=0, then generate a general formula for the Taylor series. Then calculate the error at x=1/2. 
 
For the most part, we proceed as we did before. 
 

𝑛 𝑛! 𝑓(𝑛)(𝑥) 𝑓(𝑛)(𝑐) (𝑥 − 𝑐)𝑛 𝑓(𝑛)(𝑐)(𝑥 − 𝑐)𝑛

𝑛!
 

0 1 𝑒𝑥 1 1 1 

1 1 𝑒𝑥 1 𝑥 𝑥 



2 2 𝑒𝑥 1 𝑥2 𝑥2

2
 

3 6 𝑒𝑥 1 𝑥3 𝑥3

6
 

4 24 𝑒𝑥 1 𝑥4 𝑥4

24
 

5 120 𝑒𝑥 1 𝑥5 𝑥5

120
 

 

Taylor polynomial is an approximation of the Taylor series, 𝑃4(𝑥) = 1 + 𝑥 +
𝑥2

2
+

𝑥3

6
+

𝑥4

24
. 

 

What about the error. The 𝑓(5)(𝑥) = 𝑒𝑥. Approximating the error at x=1/2. 
 

𝑅𝑛(𝑥) =
𝑓(𝑛+1)(𝑧)

(𝑛 + 1)!
(𝑥 − 𝑐)𝑛+1 =

max|𝑓𝑛+1(𝑥)| (𝑥 − 𝑐)𝑛+1

(𝑛 + 1)!
 

 

I want to think about the interval (since we are centered at x=0) (−
1

2
,
1

2
). Take the distance from the 

center as your radius. Where is 𝑒𝑥 the largest (magnitude) on this interval? It’s gonna be at x=1/2. 
 

𝑅𝑛(𝑥) =
𝑒
1
2 (
1
2 − 0)

5

5!
≈
𝑒
1
2 (
1
2)

5

120
≈ 4.29 × 10−4 ≈ 0.000429… 

 
 
What can we do with Taylor series besides differentiating and integrating? 
 
If we want to shift the center of the function, you may need to recalculate the coefficients. 
 
Suppose you replace a function centered at 0 using x with 𝑥 − 3, then the best approximation is still 
going to be at x=0. 
 

Suppose we want to generate the power series for 𝑓(𝑥) = sin(√𝑥) 
 

sin(𝑥) = ∑
(−1)𝑛𝑥2𝑛+1

(2𝑛 + 1)!

∞

𝑛=0

 

 

sin(√𝑥) = ∑
(−1)𝑛(𝑥

1
2)2𝑛+1

(2𝑛 + 1)!
= ∑

(−1)𝑛𝑥𝑛+
1
2

(2𝑛 + 1)!

∞

𝑛=0

∞

𝑛=0

 

 

Suppose I want to generate a power series for 𝑓(𝑥) = 𝑥3𝑒𝑥
2
 

 

𝑓(𝑥) = ∑
𝑥2𝑛

𝑛!

∞

𝑛=0

(𝑥3) = ∑
𝑥2𝑛+3

𝑛!

∞

𝑛=0

 

 



Trickier, what if I wanted to generate a power series for 𝑓(𝑥) = 𝑒𝑥sin(𝑥)? 
 

𝑒𝑥 sin(𝑥) = (∑
𝑥𝑛

𝑛!

∞

𝑛=0

)(∑
(−1)𝑛𝑥2𝑛+1

(2𝑛 + 1)!

∞

𝑛=0

) = 

 

(1 + 𝑥 +
𝑥2

2
+
𝑥3

6
+
𝑥4

24
+⋯)(𝑥 −

𝑥3

6
+

𝑥5

120
−⋯) 

 
Can’t just multiply the general term by each other. I have to FOIL. Figure out how many powers you 
want, and then stop FOILing when your terms exceed that power. 
 
Suppose I want to stop at 𝑥3 
 

(1 + 𝑥 +
𝑥2

2
+
𝑥3

6
+⋯)(𝑥 −

𝑥3

6
+⋯) 

 

𝑥 −
𝑥3

6
+ 𝑥2 +

𝑥3

2
… terms up to 𝑥3, and so just simplify and proceed with the problem. 

 
We can still talk about division. 
Applications (in say differential equations). 
 
Review for the exam on Wednesday. 
 

 

∑
𝑛!

𝑛𝑛
𝑥𝑛

∞

𝑛=1

 

 

lim
𝑛→∞

(𝑛 + 1)! 𝑥𝑛+1

(𝑛 + 1)𝑛+1
×

𝑛𝑛

𝑛! 𝑥𝑛
= lim

𝑛→∞

(𝑛 + 1)𝑛! 𝑥𝑛𝑥

(𝑛 + 1)𝑛(𝑛 + 1)
×

𝑛𝑛

𝑛! 𝑥𝑛
= lim

𝑛→∞

𝑛𝑛𝑥

(𝑛 + 1)𝑛
 

 

= 𝑥 lim
𝑛→∞

𝑛𝑛

(𝑛 + 1)𝑛
=
𝑥

𝑒
 

 

lim
𝑛→∞

(𝑛 + 1)𝑛

𝑛𝑛
= lim

𝑛→∞
(
𝑛 + 1

𝑛
)
𝑛

= lim
𝑛→∞

(1 +
1

𝑛
)
𝑛

= 𝑒 

 
 
 
 
 
 
 
 
 
 



 
 


