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Volumes of solids of Revolution—Cylindrical Shells (2.3)
Arc Length, and Surface Area of solids of revolution (2.4)

The method of cylindrical shells allows us to rotate functions of x around the y-axis (or lines parallel to
the y-axis). Or to rotate functions of y around the x-axis (or a line parallel to x-axis).
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Surface area times the thickness is the volume. And the surface of the cylindrical shell is a rectangle. The
height of the cylinder = function. The other side is the circumference of the cylinder. C = 2mr. What is
the radius? That distance is just x. The volume is going to be V = (2mx) f(x)Ax.

b
V= 2nf xf (x)dx

d
V= 2nf yf()dy

Example.
Find the volume of the solid of revolution bounded by f(x) = —(1 — x)? + 1 and y = 0. Revolved
around the y-axis.

f)=—-1-x)?+1=-(1-2x+x>)+1=-1+2x—x%>+1=2x—x?
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V= an x(2x — x?)dx = an 2x2 —x3dx =2n [—x3 ——x4] =
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What if I'm rotating the function around a line parallel to the y-axis?
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What changes here is the radius in our function. It’s not x anymore. It’s now x minus the axis of rotation.
x—(-1D)=x+1

Repeat the same problem as before with the new axis of rotation.
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V= an (x + 1)(2x — x?)dx
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Example.

Find the volume of the solid of revolution if we rotate the region bounded by x = 2\/_,x =0,y=2
around the x-axis.
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V= an yf(y)dy = ZnIO y(2,/y)dy = 47TJ;) y%dy =4m [gy%] = ?n(\/3_2) = %(4\/5)
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Rotate the same problem but around y=3.

In this orientation the axis of rotation is on the opposite side of the region (compared to the x-axis).
The radius for the cylinder, becomes axis of rotation minus y.
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ZHJ;) (3- y)(Zﬁ)dy

Arc Length and Surface Area of volumes of revolution.
The approximation that underlies the arc length formula is the Pythagorean Theorem.
a? + b? = ¢?
a is the small distance in x = Ax, and b is the small distance in y = Ay, and c is the estimate for the length

of the curve.

See handout on Arc Length for details of the derivation.
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Example. Find the arclength of the function f(x) = In (cos x) on the interval E,%]

f'(x) = (—sinx) = —tanx
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s=.[n 1+(—tanx)2dx=jﬂ \/1+tan2xdx=-fﬂ \/seczxdx=-fﬂsecxdx=
6 6 6 6

[In|secx + tanx]|]; = ln|2 + \/§| —In ~ 0.76765 ...
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Very few functions make integrable arc length problems.

This leads us to the surface are of the solid of revolution.



b
SA = 271] R(x)\/1+ [f'(x)]?dx

The R(x) function out front is going to change depending on the axis of rotation.

If we are using a function of x, and we are rotating around the x-axis, the radius of cylinders is the height
of the function. So we’d get

b
SA = an fOO)V1+[f'(x0)]?dx

If we are using a function of x, and we are rotating around the y-axis, the radius of our cylinders is the
distance from y-axis, which is x. So we get

b
sS4 = 2nf I+ I (OPdx

Example.
We want to find the surface of the solid of revolution formed by rotating the region bounded by y = x
and x = 2,y = 0, around the y-axis.
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sS4 = 2nf I I OPdx
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an xy 1+ [2x]%dx = an xV 1+ 4x%dx
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u=1+4x?du= 8xdx,§du = xdx
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What if we rotate around the x-axis?

SA—an fOOV1+[f'(x)] dx—2nf 1+ [2x] dx—2nf 21 + 4x2dx

This would require trig substitution to complete by hand (next chapter), or we can put it in the
calculator.



