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Volumes of solids of Revolution—Cylindrical Shells (2.3) 
Arc Length, and Surface Area of solids of revolution (2.4) 
 
The method of cylindrical shells allows us to rotate functions of x around the y-axis (or lines parallel to 
the y-axis). Or to rotate functions of y around the x-axis (or a line parallel to x-axis). 
 

 
 
Surface area times the thickness is the volume. And the surface of the cylindrical shell is a rectangle. The 
height of the cylinder = function. The other side is the circumference of the cylinder.  𝐶 = 2𝜋𝑟. What is 
the radius? That distance is just 𝑥.  The volume is going to be 𝑉 = (2𝜋𝑥)𝑓(𝑥)Δ𝑥. 
 

𝑉 = 2𝜋∫ 𝑥𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 

 

𝑉 = 2𝜋∫ 𝑦𝑓(𝑦)𝑑𝑦
𝑑

𝑐

 

Example. 
Find the volume of the solid of revolution bounded by 𝑓(𝑥) = −(1 − 𝑥)2 + 1 and 𝑦 = 0. Revolved 
around the y-axis. 
 

𝑓(𝑥) = −(1 − 𝑥)2 + 1 = −(1 − 2𝑥 + 𝑥2) + 1 = −1 + 2𝑥 − 𝑥2 + 1 = 2𝑥 − 𝑥2 
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What if I’m rotating the function around a line parallel to the y-axis? 
 



 
What changes here is the radius in our function. It’s not x anymore. It’s now x minus the axis of rotation. 
 

𝑥 − (−1) = 𝑥 + 1 
 
Repeat the same problem as before with the new axis of rotation. 
 

𝑉 = 2𝜋∫ (𝑥 + 1)(2𝑥 − 𝑥2)𝑑𝑥
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Example. 

Find the volume of the solid of revolution if we rotate the region bounded by 𝑥 = 2√𝑦, 𝑥 = 0, 𝑦 = 2 

around the x-axis. 
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Rotate the same problem but around y=3. 
 
 In this orientation the axis of rotation is on the opposite side of the region (compared to the x-axis). 
The radius for the cylinder, becomes axis of rotation minus y. 
 

2𝜋∫ (3 − 𝑦)(2√𝑦)𝑑𝑦
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Arc Length and Surface Area of volumes of revolution. 
 
The approximation that underlies the arc length formula is the Pythagorean Theorem.  
 

𝑎2 + 𝑏2 = 𝑐2 
𝑎 is the small distance in x = Δ𝑥, and b is the small distance in y = Δ𝑦, and c is the estimate for the length 
of the curve. 
 
See handout on Arc Length for details of the derivation. 
 

𝑠 = ∫ √1 + [𝑓′(𝑥)]2𝑑𝑥
𝑏
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Example. Find the arclength of the function 𝑓(𝑥) = ln(cos 𝑥) on the interval [
𝜋

6
,
𝜋

3
]. 

 

𝑓′(𝑥) =
1

cos 𝑥
(− sin 𝑥) = − tan 𝑥 
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Very few functions make integrable arc length problems. 
 
This leads us to the surface are of the solid of revolution. 



 

𝑆𝐴 = 2𝜋∫ 𝑅(𝑥)√1 + [𝑓′(𝑥)]2𝑑𝑥
𝑏
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The R(x) function out front is going to change depending on the axis of rotation. 
 
If we are using a function of x, and we are rotating around the x-axis, the radius of cylinders is the height 
of the function.  So we’d get 
 

𝑆𝐴 = 2𝜋∫ 𝑓(𝑥)√1 + [𝑓′(𝑥)]2𝑑𝑥
𝑏
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If we are using a function of x, and we are rotating around the y-axis, the radius of our cylinders is the 
distance from y-axis, which is x.  So we get 
 

𝑆𝐴 = 2𝜋∫ 𝑥√1 + [𝑓′(𝑥)]2𝑑𝑥
𝑏

𝑎

 

 
Example. 
We want to find the surface of the solid of revolution formed by rotating the region bounded by 𝑦 = 𝑥2 
and 𝑥 = 2, 𝑦 = 0, around the y-axis. 
 

 
 

𝑆𝐴 = 2𝜋∫ 𝑥√1 + [𝑓′(𝑥)]2𝑑𝑥
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𝑓′(𝑥) = 2𝑥 

2𝜋∫ 𝑥√1 + [2𝑥]2𝑑𝑥
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𝑢 = 1 + 4𝑥2, 𝑑𝑢 = 8𝑥𝑑𝑥,
1

8
𝑑𝑢 = 𝑥𝑑𝑥 

 

2𝜋∫
1

8
𝑢1/2𝑑𝑢

17

1

=
𝜋

4
[
2

3
𝑢
3
2]

1

17

=
𝜋

6
[17

3
2 − 1] 

 
 



What if we rotate around the x-axis? 

𝑆𝐴 = 2𝜋∫ 𝑓(𝑥)√1 + [𝑓′(𝑥)]2𝑑𝑥
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This would require trig substitution to complete by hand (next chapter), or we can put it in the 
calculator. 
 
 
 
 
 
 
 
 
 
 
 
 
 


