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Exponential and Log Integrals (2.7)
Exponential Growth and Decay (2.8)
Hyperbolic Trig Functions (2.9)
Review of Integration Techniques

Exponential and Log Integrals.
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Recall that the power rule has an exception
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What if the base of the exponential or log is not e? Recall In(x) = log,(x)

d Xy = (] x
2 (@) =(na)a

ax
faxdx=—+C
Ina

d
dx (loga x) = (Ina)x

1
=1
f(lna)xdx 0g,x +C

Example where we would have (want) to use the log-base-a rather than natural log is with a

substitution.
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Change-base of rule:
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Review of exponential and log algebra rules
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Example.
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When you have an exponential function, if u-substitution is going to work, the exponent of the

exponential is typically u.
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For logarithms, you may see problems that have logarithms in the integral. If that is the case, then the
log must be the substitution. We can take a derivative of the log, we can’t integrate.

Logs also come up when we have rational expressions.
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Some things to keep in mind about rational functions generally:

If the numerator is the same degree or bigger than the denominator, you need to do long
division.

If you have the sum of squares in the denominator (and no x in the numerator) think about
arctangent function.

The exception to the power rule that produces a Inx only applies to 1/x, not any other power of
x in the denominator.

Recall [ tanx dx = —In|cos x| + C = In|secx| + C, similarly [ cotx dx = In|sinx| + C
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[In|secx + tanx|] = ————— (secx tanx + sec® x) = =secx
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Exponential growth and decay

P(t) = Poekt

If k>0, it’s a growth problem, if k<0, then it’s a decay problem.

nt
A compounding problem for finance A(t) = P (1 + %)

How do the problems in this section differ from precalculus?

nt
Derivation of formulas uses some calculus (can prove that lim (1 + %) =e™)
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Sometimes the problems ask about rates: what is the (instantaneous) rate of change of a growth
problem at a point in time. Take the derivative to find the rate.
Sometimes a problem might ask about the accumulated interest. Integrate over the given period
time using the rate function to obtain the accumulated interest.

Hyperbolic Trig Functions
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Compare to regular (circular) trig functions.



v = cosh(x)

sin(x) = %
eix + e—ix
cos(x) = —

e = cos(x) + i sin(x)

sin x

tan(x) =
cosx

sinh(x) e*—e™

h(x) = =
tanh(x) cosh(x) e*+e™*

th(x) = 1 cosh(x)
coLx) = tanh(x)  sinh(x)

b = — L =2
sech(x) = cosh(x) e*+e~>

1 2

csch(x) =

sinh(x) TeX—ex

Pythagorean identities are not based on circles, but on hyperbolas.

Instead of cos? x + sin?x =1

Derivatives and antiderivatives

Derivatives/antiderivatives mostly follow the regular trig derivative rules except for two sign changes.

cosh?(x) — sinh?(x) = 1
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The cosh(x) function works well in the arc length formula.

Suppose we want to find the length of arc for a curve given by y = cosh (x).
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Review of integration techniques
e It's a good idea to memorize your basic derivative rules
e Isthere algebra | can do to simplify this problem?
o Exponential and log rules?
o You may be able to apply an identity (trig identity) to simplify. (power reducing
identities and Pythagorean identities)



o Rational expressions may need long division to proceed
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opposite sign in the exponent (top and bottom).
e U-substitution — undoes the chain, you a composite multiplied by a simpler function that is like
the derivative of the “inside” function.

e Change of variables

o If you have an expression like ) but multiply by the exponential with the



