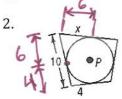

Date:


## Problem #1: Chords/Tangents/Radii Problems

Find the value of x in each figure below. Assume lines that appear to be tangents are tangents.

1.

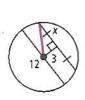


$$36 + 64 = x^2$$



# x=6

## Problem #2: More Chords/Tangents/Radii Problems


Find the value of x in each figure below. Assume lines that appear to be tangents are tangents.

1.



$$y^{2} + 3^{2} = 8^{2}$$
  
 $y^{2} + 9 = 64$   
 $y^{2} = 56$   
 $y = \sqrt{56} = 2\sqrt{14}$   
 $x = 2y = 4\sqrt{14}$ 

2.

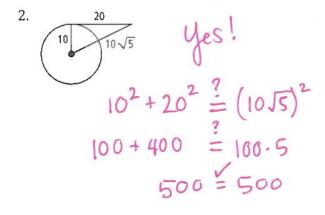


radius = 6



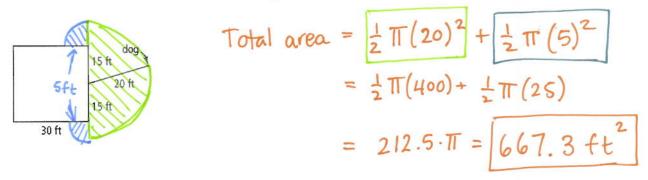
$$3^2 + \chi^2 = 6^2$$

$$x^2 = 36 - 9$$


$$x^2 = 27$$

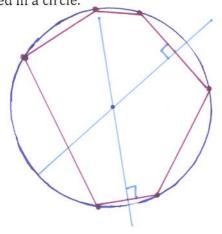
$$x = \sqrt{27} = 3\sqrt{3}$$

### Problem #3: Tangent Line or not?


Determine whether a tangent line is shown in each diagram.

1.  $9^{14}$  No!  $9^{2}+14^{2} \stackrel{?}{=} 17^{2}$   $81 + 196 \stackrel{?}{=} 289$   $277 \neq 289$ 




#### Problem #4: An Area Problem

A dog is on a 20-ft leash. The leash is attached to a pipe at the midpoint of the back wall of a 30 ft-by-30 ft house, as shown in the diagram. Sketch and use shading to indicate the region in which the dog can play while attached to the leash. Find the area of this region.



## Problem #5: Inscribed Polygons

A polygon is inscribed in a circle. Are the perpendicular bisectors of the sides of the polygon concurrent? Explain. Illustrate your explanation with a picture of a (not regular!) hexagon inscribed in a circle.



yes! The sides of the polygon are chords of the circle, so their perpendicular bisectors are concurrent at the center of the circle.

Two are drawn here.