Activities for Chapter 4

Name: _____

Date: _____

Activity 1: Congruent or not?

State if the following triangles are congruent. If they are, state how you know.

1.

5.

7.

9.

2.

4.

6.

8.

10.

Activity 2: Congruence Proofs

Complete the following proofs that two triangles are congruent.

a. **Given:** $\overline{MR} \perp \overline{ON}$, $\overline{OQ} \perp \overline{MN}$

 $\overline{MR} \cong \overline{OQ}$

Prove: $\Delta MRN \cong \Delta OQN$

Statements	Reasons
1.	1. Given
2.	2. Given
3. $m \angle MRN = m \angle OQN = 90^{\circ}$	3.
$4. \ \angle MNR \cong \angle ONQ$	4.
5. $\Delta MRN \cong \Delta OQN$	5.

b. Given: $\overline{HK} \perp \overline{GI}$, $\overline{JL} \perp \overline{GI}$ $\overline{GH} \cong \overline{JI}$, $\overline{GL} \cong \overline{KI}$

Prove: $\Delta GKH \cong \Delta ILJ$

Statements	Reasons
1.	1. Given
2. $\overline{GH} \cong \overline{JI}$, $\overline{GL} \cong \overline{KI}$	2.
3. $GH = JI$, $GL = KI$	3.
4.	4. Segment Addition Postulate
5.	5.
6. GK + KL = KL + IL	6.
7.	7.
8. $\overline{GK} \cong \overline{IL}$	8.
9. $\Delta GKH \cong \Delta ILJ$	9.

Activity 3: Using cpoctac

In the following proofs, you will use triangle congruence to prove that particular angles or segments are congruent.

Prove: \overline{XZ} bisects $\angle WXY$

Statements	Reasons
1. $\angle 1 \cong \angle 2$, $\overline{WZ} \cong \overline{YZ}$	1. w
2.	2. Reflexive Property
3. $\Delta WXZ \cong \Delta YXZ$	3.
4.	4. cpoctac
5. \overline{XZ} bisects $\angle WXY$	5.

b. **Given:**
$$\overline{CD} \perp AB$$
, $\overline{AE} \perp \overline{BC}$
 $\overline{CD} \cong \overline{AE}$

Prove: $\triangle ABC$ is isosceles

Statements	Reasons
1.	1. Given
2. $\overline{CD} \perp \overline{AB}$, $\overline{AE} \perp \overline{BC}$	2.
3. $m \angle ADC = m \angle CEA = 90^{\circ}$	3.
4.	4. Definition of right triangles
5.	5. Reflexive Property
6. $\triangle ADC \cong \triangle CEA$	6.
7.	7.
8. $\triangle ABC$ is isosceles	8.