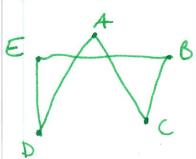
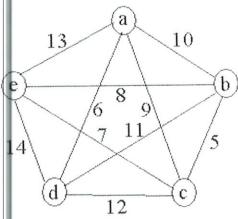
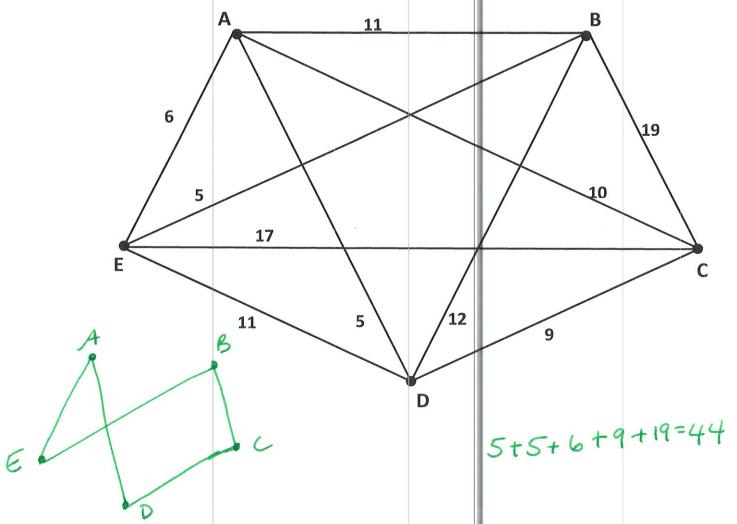

Instructions: Show all work. Use exact answers unless specifically asked to round. Be sure to complete all parts of each problem.

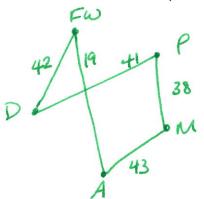
1. Use the Brute Force algorithm to find the minimal cost Hamilton circuit for the K_4 graph shown. State the final cost of the minimal circuit. (10 points)


ABCDA = 11+10+14+16=51 ACBDA = 7+10+17+16=50 ACDBA = 7+14+17+11=49


- 2. For the complete graph below, find the approximate minimal cost Hamilton circuit using the indicated method. State the final cost of the circuit. (6 points each)
 - a. Nearest Neighbor starting at A

6+11+5+7+13=42


b. Nearest Neighbor starting at D



6+9+5+8+14=42

3. Use the Cheapest Link/Sorted Edges algorithm on the graph below to find the approximate minimal cost Hamilton Circuit. Clearly state the cost of the final circuit. (8 points)

4. Use the mileage table shown below and the Nearest Neighbor algorithm starting from Plano to find the minimal cost Hamilton circuit for traveling between the cities in the table. Be sure to clearly state the final cost of the circuit. (8 points)

	Tal	100	A 1: 1	T
	Plano	Mesquite	Arlington	Denton
Fort Worth	54	52	19	42
Plano		38	53	41
Mesquite			43	56
Arlington				50

42+19+43+38+41= 183

5. Draw a K_6 graph. (5 points)

6. Apportion the following table of an imaginary state legislature according to Hamilton's Method if there are 183 seats to be apportioned. (10 points)

STATE	POPULATION	STANDARD QUOTA	LOWER QUOTA	UPPER QUOTA	+1	FINAL APPORTIONMENT
TOGO	89,290	49.48	49	50	+1	50
IZUMI	97,974	54.29	54	55		54
SAKATA	59,597	33.02	33	34		33
OGURA	9,782	5.42	5	6		5
TOYAMA	25,742	14.26	14	15		14
KOISO	47,869	26.53	26	27	41	27
TOTALS	3 0,254		181			183
0-1804	67					

SD= 1804, 67

7. Apportion the following table of an imaginary state legislature according to Adams' Method if there are 183 seats to be apportioned. Suggested Modified Divisors are 1780, 1800, 1840. 10 points)

STATE	PCPULATION	STANDARD QUOTA	MODIFIED QUOTA	MODIFIED QUOTA	MODIFIED QUOTA	FINAL APPORTIONMENT
TOGO	89,290	49.48	48.52			49
IZUMI	97,974	54.29	53.25 32.39			54
SAKATA	59,597	33.02	32.39)		33
OGURA	9,782	5.42	5.32			6
TOYAMA	25,742	14.26	13.99			14
KOISO	47,869	26.53	26.02	3		27
TOTALS	330,254					183

So = 1804.67

8. Apportion the following table of an imaginary state legislature according to Huntington-Hill's Method if there are 182 seats to be apportioned. (10 points)

STATE	POPULATION	STANDARD LOWER QUOTA QUOTA	UPPER QUOTA	$\sqrt{LQ*UQ}$ FINAL APPORTIONMENT
TOGO	89,290	48.48 49.6149	50	49.497 50
IZUMI	97,974	54.29 54.43 54	55	51.4977 54
SAKATA	59,597	33.02.33.11 33	34	33.496 33
OGURA	9,782	5.42 5.43 5	6	5.477 5
TOYAMA	25,742	14.26 14.30 H	15	14.491 14
KOISO	47,869	14.26 14.30 14 26.53 26.59 26	27	26.495 27
TOTALS	330,254			183

SD= 1804.67

MQ = 1860

9. The following examples represent apportionment paradoxes (or quota rule violations). Determine which one is represented by each example and justify your reasoning. (5 points each)

a. The following two different apportionments of the same population.

School	Original Apportionment	New Apportions	nent
Cascades	9	9	
Seven Oak	11	10	R
Riverview	6	7	
Pioneer	- 4	5	
Hamilton Creek	5	6	

=35 seats

=37 seats

b. The following table shows apportionments for successive censuses with 50 seats each.

State	Population #1	Apportionment	Population #2	Apportionment
		#1		#2
Jefferson	60,000	8	60,000	8
Clay	31,200	4	31,200	5
Madison	69,200	10	72,400	10
Jackson	81,600	11	81,600	11
Franklin	118,000	17	118,400	16
Totals	360,000	50	363,600	50

Clay 0% screase

Franklin 400 = .0033898 >0

Franklin grew but last a Seat V5. Clay stayed same but gained

Alabana paudox Seats changed lost a seat

The following table represents the apportionment of 6 states using Jefferson's Method.

State	Population	Standard Quota (SD = 50,000)	Lower Quota	Modified Quota (D = 49,500)	Jefferson apportionment
А	1,646,000	32 92	32	33.25	33
В	6,936,000	138.72	138	140 12	140
С	154,000	3.08	3	3.11	3
D	2,091,000	41.82	41	42.24	42
Е	685,000	13.70	13	13.84	13
F	988,000	19.76	19	19.96	19
Total	12.500,000	250 00	246		250

quota rule violations 140 is above upper quota

10. Describe (Balinksi-)Young's Impossibility Theorem and why it's important for understand in apportionment. (5 points)

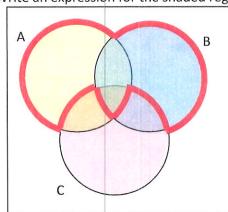
it says that no appointment method is perfectly fair. All methods will lither have paudores or sometimes produce quota rule volations.

11. Suppose that A is the set of letters in the name ELIZABETH and B is the set of letters in the name PENELOPE. (3 points each)

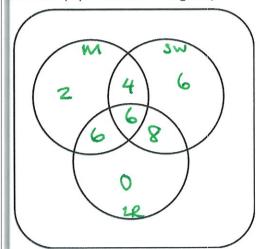
b. List the elements of set B

(don't list E twice)

(only list P, E mee each)


c. Find $A \cup B$

d. Find $A \cap B$


e. If U is the set of all letters in the standard English alphabet, what is A^c ?

¿C, D, F.G, J, K, M, N, O, P, Q R, S, U, V, W, X, Y &

12. Write an expression for the shaded region. (6 points)

- 13. Use the information below to fill in the Venn Diagram, then determine: (5 points each + diagram)
 - a. How many students have seen exactly one of these
 - movies? Seen only Star Wars?
 - 18 had seen The Matrix (M)
 - 24 had seen Star Wars (SW)
 - 20 had seen Lord of the Rings (LotR)
 - 10 had seen M and SW
 - 14 had seen LotR and SW
 - 12 had seen M and LotR
 - 6 had seen all three

14. The 100 tiles in Scrabble are distributed as follows:

Tile	Number	Tile	Number	Tile	Number	Tile	Number
Blank	2	Α	9	В	2	С	2
D	4	E	12	F	2	G	3
Н	2	ı	9	J	1	К	1
L	4	M	2	N	6	0	8
Р	2	Q	1	R	6	S	4
Т	6	U	4	V	2	W	2
Х	1	Υ	2	Z	1		

a. What is the probability of selecting an N as the first tile in a game? (3 points)

$$\frac{6}{100} = \frac{3}{50} = 6\%$$

b. What is the probability of selecting a vowel (not Y or blanks) as the first tile? (3 points)

$$\frac{9+12+9+8+4}{100} = \frac{42}{100} = \frac{21}{50} = 42\%$$

c. What is the probability of not selecting a vowel? (3 points)

d. What is the probability of selecting the word BOX in order from the first three tiles in a game? (5 points)

$$\frac{2}{100} * \frac{8}{99} * \frac{1}{98} = 1.649 \times 10^{-5}$$

15. Use the following table to calculate the probabilities requested. (4 points each)

		STUDENT'S CHOICE		
		Art degree	Science degree	Total
GROUP	Boys	25	50	75
	Girls	55	20	75
and the second second	Total	80	70	150

a. What is the probability of a randomly selected person from this study is a girl?

b. What is the probability of a randomly selected person from this study being a girl and wants a science degree?

$$\frac{20}{150} = \frac{2}{15} = 13.3\%$$

c. What is the probability of a randomly selected person from this study being a girl or wanting a science degree?

$$\frac{75}{150} + \frac{70}{150} - \frac{20}{150} = \frac{125}{150} = 83.3\%$$

d. What is the probability of being a girl given that the person wants a science degree?

$$\frac{20}{70} = \frac{2}{7} = 28.57\%$$

e. Are the variables gender and degree choice independent? Why or why not? Show calculations to justify your answer.

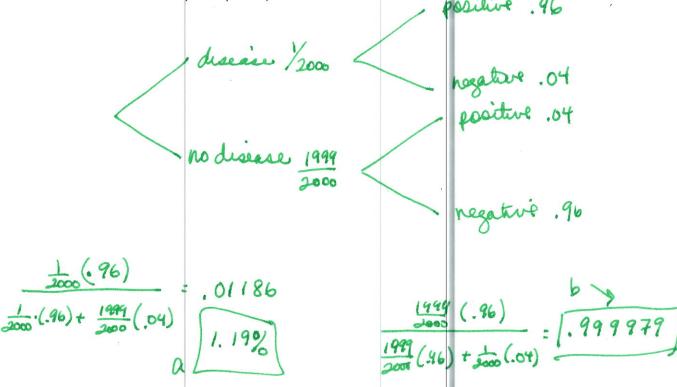
- 16. Determine the number of outcomes in each of the following scenarios. (5 points each)
 - a. A local area network requires eight characters for a username and is case sensitive, but the character can use numbers only in the last three digits (i.e. capital and lower case letters in the first five digits, but letters and numbers in the last three). How many usernames of this type are there?

b. Suppose that a lottery has 44 balls, and someone needs 6 matches in any order to win the top prize. How many possible winning number combinations are possible?

c. Suppose that ten horses are in a particular race. How many ways can the top four horses finish?

- 17. Find the probability of each of the following scenarios. (5 points each)
 - a. Social Security numbers are composed of 9 digits, and each digit can be any number from 0 9. What is the probability that a randomly selected Social Security number will be all odd numbers?

b. What is the probability of getting a pair of aces and a pair of kings in a 5-card poker hand?


$$\frac{(4c2)(4c2).44}{52c5} = 6.09 \times 10^{-4}$$
expressions. (3 points each)

18. Evaluate the following expressions. (3 points each)

. Evaluate the folio	willig expressions. (5 points each)		
a. $\binom{9}{4}$	b. ${}^{7}_{3}P$	c. $^{12}_{5}C$	d. 0!
126	210	792	1

- 19. A certain virus infects one in every 2000 people. A test used to detect the virus in a person is positive 96% of the time if the person has the virus and 4% of the time if the person does not have the virus. Let A be the event "the person is infected" and B be the event "the person tests positive". [Hint: use a tree diagram.] (5 points each)
 - a. Find the probability that a person has the virus given that they have tested positive, i.e. find P(A | B).

b. Find the probability that a person does not have the virus given that they test negative, i.e. find P(not A | not B).

20. Suppose that the odds against an event are 7:9. What is the probability of the event? (5 points)

21. Suppose that the probability of an event is $P(A) = \frac{16}{33}$. What are the odds for the event? (5 points)