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Systems of Springs 
 
 
Systems of springs can be used to model all kind of complex behavior, including the vibrations of 
molecules in crystals or in chemical bonds.  We want to begin here with just two spring with no 
damping, with just one-dimensional motion, and work our way up to more complex models from there. 
 
Example 1.  Consider the model shown below.  Write an equation that models the coupled spring-mass 
system. 

 
We want to find all the forces on each mass.  We will do this by equating forces to get the signs correct.  
Then we can rearrange our equations to put the system in standard form if needed. 
 
Recall that a general force model for acceleration 𝐹 = 𝑚𝑎 = 𝑚𝑥′′ is equal to all other forces on the 
system.  Here, the forces being applied are from Hooke’s Law: 𝐹 = −𝑘𝑥.  The negative is because the 
force is applied in the opposite direction of motion.  Because springs connect the masses, when one 
mass moved, this also creates a force on the other mass, so we will need to take that into account as 
well. 
 
Let’s consider 𝑚1 and its position given by 𝑥1.  The acceleration here will be given by 𝐹 = 𝑚1𝑥1′′.  To 
find the forces on the mass from the springs, first we find the forces from the motion of 𝑚1 itself.  
Imagine everything else in the system is fixed: If 𝑚1 moves to the right, a force is applied from spring #1, 
which is now stretched, pulling the mass back to the left: −𝑘1𝑥1; and there is a second force from spring 
#2, which is now compressed, pushing the mass back to the left as well: −𝑘2𝑥1.  Now, fix 𝑚1 and 
imagine moving 𝑚2 to the right.  This stretches spring #2 and applies a force pulling 𝑚1 in the same 
direction as 𝑚2: +𝑘2𝑥2.  The third spring does not apply force directly to 𝑚1. 
 
Adding these spring forces on the right side of the equation to the acceleration term on the left side, we 
get 

𝑚1𝑥1
′′ = −𝑘1𝑥1 − 𝑘2𝑥1 + 𝑘2𝑥2 

 
Applying the same reasoning to the second mass, the acceleration is 𝑚2𝑥2′′.  The forces on 𝑚2 when 𝑚2 
is moved to the right are −𝑘2𝑥2 and −𝑘3𝑥2, and the force on 𝑚2 from moving 𝑚1 to the right is +𝑘2𝑥1.  
This results in the equation 

𝑚2𝑥2
′′ = 𝑘2𝑥1 − 𝑘2𝑥2 − 𝑘3𝑥2 

 
Solving for 𝑥⃗′′ 
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𝑥⃗′′ =

[
 
 
 
−𝑘1 − 𝑘2

𝑚1

𝑘2

𝑚1

𝑘2

𝑚2

−𝑘2 − 𝑘3

𝑚2 ]
 
 
 

 

 
If we have values for the masses and spring constants, we can insert them at the start, or at this point in 
the equation, in order to solve the system. 
 
We can create a more realistic scenario by adding damping to the system. 
 
Example 2.  Consider the system below.  Write the equation that models the system. 
 

 
 
Recall that damping forces are given by 𝐹 = −𝛾𝑣 = −𝛾𝑥′ and these forces go on the same side of the 
equation as the spring forces.  (In this diagram, the damping is given by 𝑏1, 𝑏2.) 
 
In addition to 𝐹 = 𝑚1𝑥1

′′, there are the spring forces from motion of 𝑚1 : − 𝑘1𝑥1 and spring forces from 
motion of 𝑚2 : + 𝑘1𝑥2, and there is damping for each of these motions (with the same signs) from the 
damping between the two masses: −𝑏1𝑥1

′  and +𝑏1𝑥2′.  This results in the equation 
 

𝑚1𝑥1
′′ = −𝑏1𝑥1

′ + 𝑏1𝑥2
′ − 𝑘1𝑥1 + 𝑘1𝑥2 

 
The second mass has forces acting on it from both springs due to motion of the second mass: −𝑘1𝑥2 −
𝑘2𝑥2 but also forces from the motion of the first mass: +𝑘1𝑥1.  There are also damping forces from 
motion of the second mass: −𝑏1𝑥2

′ − 𝑏2𝑥2′, and damping forces from motion of the first mass: +𝑏1𝑥1′.  
Both match the signs of the spring forces.  This results in the equation 
 

𝑚2𝑥2
′′ = 𝑏1𝑥1

′ − 𝑏1𝑥2
′ − 𝑏2𝑥2

′ + 𝑘1𝑥1 − 𝑘1𝑥2 − 𝑘2𝑥2 
 
 
In order to write this in matrix form, we’ll need to make a substitution: let 𝑥1

′ = 𝑥3, 𝑥2
′ = 𝑥4 and 𝑥3

′ =
𝑥1

′′, 𝑥4
′ = 𝑥2′′: 

 
𝑥1

′ = 𝑥3 
𝑥2

′ = 𝑥4 
𝑚1𝑥3

′ = −𝑏1𝑥3 + 𝑏1𝑥4 − 𝑘1𝑥1 + 𝑘1𝑥2 
𝑚2𝑥4′ = 𝑏1𝑥3 − 𝑏1𝑥4 − 𝑏2𝑥4 + 𝑘1𝑥1 − 𝑘1𝑥2 − 𝑘2𝑥2 

 
Dividing by the masses and ordering the new terms in order, we obtain the equation 
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𝑥⃗ =

[
 
 
 
 
 

0          0
0          0

1          0
0          1

−
𝑘1

𝑚1

𝑘2

𝑚1

𝑘1

𝑚2

−𝑘1 − 𝑘2

𝑚2

−
𝑏1

𝑚1

𝑏1

𝑚1

𝑏1

𝑚2

−𝑏1 − 𝑏2

𝑚2 ]
 
 
 
 
 

𝑥⃗ 

 
 
We can combine springs with masses in other ways as well.  We can combine them in series, or in 
parallel, depending on how we want to add the spring forces.  The graphic below shows how the spring 
forces get added.  Here the connection point B is assumed to be massless. 
 

 
Example 3. Write the equation of the spring and mass model to the right. 
 
The right side of the equation is given by 𝑚𝑥′′.  All the masses are acting in the 
same direction on this single mass, so even though it is a system of springs, 
there is just one equation.  The spring above the mass sum together normally 
to affect the motion of the mass: −(𝑘1 + 𝑘2)𝑥, while the ones below it, 

combine as the reciprocal of the sum of reciprocals: −(
1

1

𝑘3
+

1

𝑘4

)𝑥.  Resulting in 

the equation 
 

𝑚𝑥′′ = −(𝑘1 + 𝑘2)𝑥 − (
1

1
𝑘3

+
1
𝑘4

)𝑥 

 
Or rearranging to put in the standard form for a single equation: 
 

𝑥′′ + [
𝑘1 + 𝑘2

𝑚
+ (

1
𝑚
𝑘3

+
𝑚
𝑘4

)]𝑥 = 0 

 
This technique can be applied to individual masses in more complicated systems as we did with multiple 
springs and dampers in previous examples. 
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Practice problems.  For each diagram below, construct the system of equations to model the setup 
using the values provided for each one. 
 

1. 𝑘1 = 𝑘2 = 1,
𝑚1 = 𝑚2 = 1 

 
 
 
 
 
 

2. 𝛾 = 1 
 
 
 
 
 

 
3. 𝑘1 = 4, 𝑘2 = 2, 𝑐1 = 3, 𝑐2 = 1,𝑚1 = 8,𝑚2 = 3 

 
 
 
 

4. 𝑘1 = 10, 𝑘2 = 3, 𝑘3 = 7,𝑚1 = 𝑚2 = 1 
 

 
 
 
 

 
5. 𝑘 = 1, 𝑘12 = 3,𝑚 = 2 

 
 
 
 
 

6. 𝑚1 = 1,𝑚2 = 2,𝑚3 = 3, 𝑘1 = 1,
𝑘2 = 4, 𝑐1 = 2, 𝑐2 = 5 
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7. 𝑚1 = 𝑚3 = 5,𝑚2 = 𝑚4 = 1, 𝑘1 = 𝑘4 = 𝑘5 = 3, 𝑘2 = 1, 𝑘3 = 10 

 
8. There are masses at dots marked 1, 2, 3 with 𝑚 = 1.  The springs are respectively: 𝑘1 = 1, 𝑘2 =

2, 𝑘3 = 3, 𝑘4 = 4 
 
 
 
 
 

9. 𝑚1 = 𝑚2 = 𝑚3 = 1, 
𝑘1 = 𝑘2 = 𝑘3 = 1 

 
 
 
 
 
 
 
 
 
 

10. The masses are marked with arrows on the diagram (also indicating the 𝑥1, 𝑥2, 𝑥3 locations.  
𝑚1 = 1,𝑚2 = 𝑚3 = 5, 𝑘1 = 𝑘2 = 𝑘3 = 1. 

 
 
 
 
 
 

11. 𝑚1 = 10,𝑚2 = 15, 𝑘1 = 4, 𝑘2 = 1,
𝑐2 = 3 

 
 
 
 
 
 
 

𝑚2 𝑚4 

𝑚1 𝑚3 

𝑘1 

𝑘2 

𝑘3 𝑘4 

𝑘5 
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12. Values are noted on diagram. 

 
 

13. 𝑚1 = 𝑚2 = 𝑚3 = 10,  
𝑘10 = 𝑘12 = 𝑘23 = 𝑘30 = 1,  
𝑘20 = 2, 𝑘13 = 5 

 
 
 

14. 𝑚1 = 𝑚2 = 20, 𝑘 = 4, 𝑘1 = 𝑘2 = 16, 𝑐1 = 𝑐2 = 2 
 
 

 
 

15. 𝑚1 = 𝑚2 = 𝑚3 = 60,
𝑘1 = 𝑘3 = 5, 𝑘𝑐1 =
𝑘𝑐2 = 6, 𝑘2 = 12,
𝑐1 = 𝑐3 = 3, 𝑐2 = 10 
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16. 𝑚1 = 𝑚2 = 𝑚3 = 𝑚4 = 𝑚5 = 𝑚6 = 1, 𝑘1𝑔 = 𝑘12 = 𝑘23 = 𝑘34 = 𝑘45 = 𝑘56 = 1 

 
 
 
In addition to dealing with systems of equations in one direction of motion, if we want to model crystals 
or molecular bonds, we can increase the directions of motion to two or three dimensions.   
 
Example 4. Consider the example below.  Suppose that each 
mass is the same (call it 𝑚 = 1 for simplicity).  Each mass can 
move in either the 𝑥 or 𝑦 directions.  Consider the mass in the 
second row, second column of the system.  In the horizontal 
direction it has two springs exerting forces on it based on its 
own motion, and two nearby masses exerting forces on it.  
Resulting in the equation 𝑚22𝑥22

′′ = −𝑘12ℎ𝑥22 − 𝑘22ℎ𝑥22 +
𝑘12ℎ𝑥21 + 𝑘22ℎ𝑥23  (the springs are also numbered “row by 
column” and whether they are horizontal or vertical).  The 
forces acting on that mass vertically are 𝑚22𝑦22′′ =
−𝑘12𝑣𝑦22 − 𝑘22𝑣𝑦22 + 𝑘12𝑣𝑦12 + 𝑘22𝑣𝑦32. 
 
Each mass in the grid has a similar pair of equations. 
 
Practice Problems. 

1. For the same problem as in the example, set up a pair 
of differential equations to model one of the edge elements in the grid.  Also Set up a pair of 
differential equation for the mass in the third row, third column of the grid.  Assume for this 
problem that all the spring constants are 1. 
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2. For the molecular “spring” model below, assume that the masses on the outside 𝑚1 = 𝑚2 =
𝑚3 = 6,𝑚4 = 1 (𝑚4 is in the center).  Also assume that the bonds form an isosceles triangle, 
with the angle between bonds being 60°, and the angle to the central mass evenly divides the 
other angle.  Use trigonometry to decompose the forces in the horizontal and vertical directions.  
Find the pair of differential equations for one of the outside masses. 

 
 
 
 
 
 


