Instructions: Show all work. Answers without work required to obtain the solution will not receive full credit. Some questions may contain multiple parts: be sure to answer all of them. Give exact answers unless specifically asked to estimate.

1. Use Euler's method to estimate the solution to $y'=t\ln y$, y(1)=2 at t=2, in 4 steps. Recall that $y_{n+1}=y_n+\Delta t f(t_n,y_n)$. Carry at least 6 decimal places through your calculation.

					_	2-1= /= = \Dt
	NE	·tn	Yn	mif	(tn, yn)	Ynot = Yn + At. Mn 4 - 12
	0	1	2	1 Cln:	2)= .6931	= 2+. V4.6939 = 2.173286795
	1	1.25	2.17	1.25 ln (=(۲۱،۵	= 2.17 + 1/4 . 9703 = 2.41 5862006
	2	1.50	241		9703	
	_	1	1	1.80 ln	(2.415)	= 2.415 + /4. 1.323 = 2.746633067
35	-	120	0.5	=	1.323	
	5	1.75	2.740	1.75 ln	(2.7466)	= 2.7466-+.25-1.768- 3.188672489
,			-	=	1.768	
	4	12	3.18	18		
			1=	-		y(2) ≈ 3.1887

2. Find the solution to the system $\begin{cases} x_1 + x_2 = 2 \\ x_1 + 2x_2 = 1 \end{cases}$ by row-reducing by hand.

$$\begin{bmatrix} 1 & 1 & | & 2 \\ 1 & 2 & | & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & | & 2 \\ 0 & 1 & | & -1 \end{bmatrix}$$

$$-R_1 + R_2 \Rightarrow R_2$$

$$-R_2 + R_1 \Rightarrow R_1$$

$$\begin{bmatrix} 1 & 0 & | & 3 \\ 0 & 1 & | & -1 \end{bmatrix}$$

$$X_1 = 3$$

$$X_2 = -1$$
or
$$X = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$