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MAT 202, Final Exam, Part Il, Summer 2016 Name

Instructions: Show ali work. You may use a calculator on this portign of the exam. To show work on
calculator problems, show the commands you used, and the resulting matrices. Give exact answers
(yes, that means fractions, square roots and exponentials, and not decimals) unless specifically directed
to give a decimal answer. This will require some operations to be done by hand even if not specifically
directed to. Be sure to complete all parts of each question. Provide explanations where requested.
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