Math 266, Homework #7, Summer 2010

2. a) When (z +9)% = (z +y)(z +y)(z +y)(z + y)(z +y) is expanded, all products of a term in the first sum.

a term in the second sum, a term in the third sum, a term in the fourth sum, and a term in the fifth sum are
added. Terms of the form 2%, zly, 232, z2y%, xy* and y® arise. To obtain a term of the form 2°, an @
must be chosen in each of the sums, and this can be done in only one way. Thus, the «® term in the product
has a coeflicient of 1. (We can think of this coefficient as (g) .) To obtain a term of the form xy, an o must
be chosen in four of the five sums (and consequently a y in the other sum). Hence, the number of such terms
is the number of 4-combinations of five objects, namely (3) = 5. Similarly, the number of terms of the form
23y? is the number of ways to pick three of the five sums to obtain a’s (and consequently take a y from each
of the other two factors). This can be done in (5) = 10 ways. By the same reasoning there are (5) = 10 ways
to obtain the z%y3 terms, (%) =5 ways to obtain the zy* terms, and only one way (which we can think of as
(5)) to obtain a y° term. Consequently, the product is z® + bzty + 1023y? + 1022y + 5zy? + y°.
b) This is explained in Example 2. The expansion is ()2 + (})aty + (5)a%y? + G)a?y® + Qayt + B)v° =
25 + 53y + 1023y + 102293 + 5ay® +y5. Note that it does not matter whether we think of the bottom of the
binomial coefficient expression as corresponding to the exponent on z, as we did in part (a), or the exponent
on ¥y, as we do here.

9. Using the Binomial Theorem, we see that the term involving 2'' in the expansion of ((2z) + (—3y))*® is
(%) (2) 10 (=3y)*. Therefore the coefficient is (%')210%(-3)% = —210139C(200, 99).

{2, We just add adjacent numbers in this row to obtain the next row (starting and ending with 1, of course):

1 11 55 165 330 462 462 330 165 55 11 1

9. Let by, by, ..., bg be the number of bagels of the 8 types listed (in the order listed) that are selected. Order
does not matter: we arc presumably putting the bagels into a bag to take home, and the order in which we
put them there is irrclevant.

a) If we want to choose 6 bagels, then we are asking for the number of nonnegative solutions to the equation
by + by + -+ + bg = 6. Theorem 2 applies, with n = 8 and r = 6, giving us the answer C(8 +6 —1,6) =
C(13,6) = 1716.

b) This is the same as part (a), except that r = 12 rather than 6. Thus there are C(8 + 12 — 1,12) =
C(19,12) = C(19,7) = 50,388 ways to make the selection. (Note that C(19,7) was easier to compute than
C(19,12), and since they are equal, we chose the latter form.)

c) This is the same as part (a), except that 7 = 24 rather than 6. Thus there are C(8 + 24 — 1,24) =
C(31,24) = C(31,7) = 2,629,575 ways to make the selection.

d) This one is more complicated. Here we want to solve the equation by + by + -+ + bg = 12, subject to
the constraint that each b; > 1. We reduce this problem to the form in which Theorem 2 is applicable
with the following trick. Let b, = b; — 1; then b} represents the number of bagels of type 4, in excess
of the required 1, that are selected. If we substitute b; = b, + 1 into the original equation, we obtain
(0, + 1) + (b + 1)+ - - + (bg + 1) = 12, which reduces to by + by + -+ by = 4. In other words, we are asking

how many ways are there to choose the 4 extra bagels (in excess of the required 1 of each type) from among
the 8 types, repetitions allowed. By Theorem 2 the number of solutions is C'(8 + 4 — 1,4) = C(11,4) = 330.
e) This final part is even trickier. First let us ignore the restriction that there can be no more than 2 salty
bagels (i.e., that by < 2). We will take into account, however, the restriction that there must be at least 3 egg
bagels (i.e., that bs > 3). Thus we want to count the number of solutions to the equation by +by+-+-+bg = 12,
subject to the condition that b; > 0 for all ¢ and bs > 3. As in part (d), we use the trick of choosing the 3
egg bagels at the outset, leaving only 9 bagels free to be chosen; equivalently, we set by = bg — 3, to represent
the extra egg bagels, above the required 3, that are chosen. Now Theorem 2 applies to the number of solutions
of by + by + b5 4+ by + - +bg =9, so there are C(8+9 —1,9) = C(16,9) = C(16,7) = 11,440 ways to make
this selection.



Next we need to worry about the restriction that by < 2. We will impose this restriction by subtracting
from our answer so far the number of ways to violate this restriction (while still obeying the restriction
that b3 > 3). The difference will be the desired answer. To violate the restriction means to have bs > 3.
Thus we want to count the number of solutions to by + by + -+ + bg = 12, with b3 > 3 and bs = 3.
Using the same technique as we have just used, this is equal to the number of nonnegative solutions to
the equation by + by + by + b + bs + -+ + bg = 6 (the 6 on the right being 12 — 3 — 3). By Theorem 2
there are C(8 + 6 — 1,6) = C(13,6) = 1716 ways to make this selection. Therefore our final answer is
11440 — 1716 = 9724.

. Assuming that the warehouses are distinguishable, let w; be the number of books stored in warehouse .
Then we are asked for the number of solutions to the equation wy + wg + ws = 3000. By Theorem 2 there
are C(3 + 3000 — 1,3000) = C (3002, 3000) = C(3002,2) = 4,504,501 of them.

. a) Let 2, = 2} + 1; thus 2} is the value that z; has in excess of its required 1. Then the problem
asks for the number of nonnegative solutions to @} + @2 + 23 + @4 + @5 = 20. By Theorem 2 there are
C(5+ 20 —1,20) = C(24,20) = C(24,4) = 10,626 of them.

b) Substitute z; = @ + 2 into the equation for each ¢; thus 2} is the value that z; has in excess of its
required 2. Then the problem asks for the number of nonnegative solutions to z{ + @4 + x4 + = + 2§ = 11.
By Theorem 2 there are C(5+ 11 —1,11) = C(15,11) = C(15,4) = 1365 of them.

c) There are C(5+ 21 — 1,21) = C(25,21) = C(25,4) = 12650 solutions with no restriction on ;. The
restriction on z; will be violated if #; > 11. Following the procedure in part (a), we find that there are
C(5+410—1,10) = C(14,10) = C(14,4) = 1001 solutions in which the restriction is violated. Therefore there
are 12650 — 1001 = 11,649 solutions of the equation with its restriction.

d) First let us impose the restrictions that z3 > 15 and @ > 1. Then the problem is equivalent to counting
the number of solutions to z1 + x4 + @4 + x4 + x5 = 5, subject to the constraints that z; < 3 and xh < 2
(the latter coming from the original restriction that zz < 4). Note that these two restrictions cannot be
violated simultaneously. Thus if we count the number of solutions to z) + @ + 2% + 24 + 5 = §, subtract
the number of its solutions in which z; > 4, and subtract the numbers of its solutions in which zf > 3,
then we will have the answer. By Theorem 2 there are C(5 + 5 — 1,5) = C(9,5) = 126 solutions of the
unrestricted equation. Applying the first restriction reduces the equation to @) + @4 + @5 + 24 + x5 = 1,

the second restriction reduces the equation to

: : 1 1-1.1) = C(5,1) = 5 solutions. Applying '
which has C(5+1-1,1) B ) (6,2) = 15 solutions. Therefore the answer 18

T+ z + x5+ e+ Ts = 2, which has C(5+2—1,2) =0
126 — 5 — 15 = 106.

23. There are several ways to count this. We can first choose the two objects to go into box #1 (C(12, 2) ways),
then choose the two objects to go into box #2 (C(10,2) ways, since only 10 objects remain), then choose the
two objects to go into box #3 (C(8,2) ways), and so on. So the answer is C(12,2)-C(10,2)-C(8,2)- C(6,2)-
C(4,2)-C(2,2) = (12-11/2)(10-9/2)(8-7/2)(6-5/2)(4-3/2)(2-1/2) = 121/28 = 7,484,400. Alternatively, just
line up the 12 objects in a row (12! ways to do that), and put the first two into box #1, the next two into
box #2, and so on. This overcounts by a factor of 26 since there are that many ways to swap objects in the
permutation without affecting the result (swap the first and second objects or not, and swap the third and
fourth objects or not, and so on). So this results in the same answer. Here is a third way to get this answer.
First think of pairing the objects. Think of the objects as ordered (a first, a second, and so on). There are
11 ways to choose a mate for the first object, then 9 ways to choose a mate for the first unused object, then
7 ways to choose a mate for the first still unused object, and so on. This gives 11-9-7-5- 3 ways to do the
pairing. Then there are 6! ways to choose the boxes for the pairs. So the answer is the product of these two
quantities, which is again 7,484,400.



31. This is a direct application of Theorem 3, with n =11, n; =5, ny =2, ng =nyg = 1, and ns = 2 (where ny

represents the number of A’s, etc.). Thus the answer is 11!/(5!2!1!112!) = 83,160.

41. This is like Example 9. If we approach it as is done there, we see that the answer is

52! 45! 38! 311 24! 52!
C(52,7)C(45,7)C(38,7)C(31,7)C(24,7) = . : . . = ~ -
( _ e ) ) 1o ) 745! 71381 7131l 7124! TWTI O 7ITVTVTITILT LA
Applying Theorem 4 will yield the same answer; in this approach we think of the five players and the undealt
cards as the six distinguishable boxes.

55. Since each box has to contain at least one object, we might as well put one object into each box to begin

with. This leaves us with just two more objects, and there are only two choices: we can put them both into
the same box (so that the partition we end up with is 6 =3+ 1+ 1 + 1), or we can put them into different

boxes (so that the partition we end up with is 6 =2 + 2+ 1+ 1). So the answer is 2.

156423, 165432, 231456, 231465, 234561, 314562, 432561, 435612, 541236, 543216, 654312, 654321

7. We begin with the first 3-combination, namely {1,2,3}. Let us trace through Algorithm 3 to find the next.

11.

Note that n =5 and r = 3; also a; = 1, as = 2, and a3z = 3. We set 7 equal to 3 and then decrease 7 until
a; # 5 —3+1. This inequality is already satisfied for ¢ = 3, since ag # 5. At this point we increment a; by 1
(so that now ag = 4), and fill the remaining spaces with consecutive integers following a; (in this case there
are no more remaining spaces). Thus our second 3-combination is {1,2,4}. The next call to Algorithm 3
works the same way, producing the third 3-combination, namely {1,2,5}. To get the fourth 3-combination,
we again call Algorithm 3. This time the ¢ that we end up with is 2, since 5 = ag = 5 — 3 + 3. Therefore
the second element in the list is incremented, namely goes from a 2 to a 3, and the third element is the next
larger clement after 3, namely 4. Thus this 3-combination is {1,3,4}. Another call to the algorithm gives
us {1,3,5}, and another call gives us {1,4,5}. Now when we call the algorithm, we find i = 1 at the end of
the while loop, since in this case the last two elements are the two largest elements in the set. Thus ay is
increased to 2, and the remainder of the list is filled with the next two consecutive integers, giving us {2,3,4}.
Continuing in this manner, we get the rest of the 3-combinations: {2,3,5}, {2,4,5}, {3,4,5}.

One way to do this problem (and to have done Exercise 10) is to generate the r-combinations using Algorithm 3,
and then to find all the permutations of each, using Algorithm 1 (except that now the elements to be permuted
are not the integers from 1 to 7, but are instead the r elements of the r-combination currently being used).
Thus we start with the first 3-combination, {1,2,3}, and we list all 6 of its permutations: 123, 132, 213, 231,
312, 321. Next we find the next 3-combination, namely {1,2,4}, and list all of its permutations: 124, 142,
214, 241, 412, 421. We continue in this manner to generate the remaining 48 3-permutations of {1,2,3,4,5}:
125, 152, 215, 251, 512, 521; 134, 143, 314, 341, 413, 431; 135, 153, 315, 351, 513, 531; 145, 154, 415,
451, 514, 541; 234, 243, 324, 342, 423, 432; 235, 253, 325, 352, 523, 532; 245, 254, 425, 452, 524, 542;
345, 354, 435, 453, 534, 543. There are of course P(5,3) =5-4-3 = 60 items in our list.



