Homework #2, Math 266, Summer 2010

9.

27.

We need to be careful to put the lover first and the lovee second as arguments in the propositional function L.
a) VzL(z, Jerry)

b) Note that the “somebody” being loved depends on the person doing the loving, so we have to put the
universal quantifier first: Vz3yL(z,y).

c) In this case, one lovee works for all lovers, so we have to put the existential quantifier first: Wz L(z,y).
d) We could think of this as saying that there does not exist anyone who loves everybody (—JzVyL(z,v)),
or we could think of it as saying that for each person, we can find a person whom he or she does not love
(Vz3y-L(z,y). These two expressions are logically equivalent.

e) Jz-L(Lydia, z)

f) We are asserting the existence of an individual such that everybody fails to love that person: JazVy—-L(y,x).
g) In Exercise 52 of Section 1.3, we saw that there is a notation for the existence of a unique object satisfying
a certain condition. Employing that device, we could write this as IlaVyL(y, ). In Exercise 52 of the present
section we will discover a way to avoid this notation in general. What we have to say is that the z asserted
here exists, and that every z satisfying this condition (of being loved by everybody) must equal z. Thus we
obtain Jz(VyL(y,z) A Vz((VwLl(w,z)) — z = z)). Note that we could have used y as the bound variable
where we used w; since the scope of the first use of y had ended before we came to this point in the formula,
reusing y as the bound variable would cause no ambiguity.

h) We want to assert the existence of two distinct people, whom we will call z and y, whom Lynn loves, as
well as make the statement that everyone whom Lynn loves must be either = or y: ExHy(:ﬂ # y A L(Lynn, ) A
L(Lynn,y) AVz(L(Lynn, z) = (z=2z V z =y))).

i) VzL(z,z) (Note that nothing in our earlier answers ruled out the possibility that variables or constants
with different names might be equal to each other. For example, in part (a), z could equal Jerry, so that
statement includes as a special case the assertion that Jerry loves himself. Similarly, in part (h), the two
people whom Lynn loves either could be two people other than Lynn (in which case we know that Lynn does
not love herself), or could be Lynn herself and one other person.)

j) This is asserting that the one and only one person who is loved by the person being discussed is in fact that
person: Javy(L(z,y) <z =1y).

Recall that the integers include the positive and negative integers and 0.

a) The import of this statement is that no matter how large n might be, we can always find an integer m
bigger than n?. This is certainly true; for example, we could always take m =n? + 1. .

b) This statement is asserting that there is an n that is smaller than the square of every integer; note that
n is not allowed to depend on m, since the existential quantifier comes first. This statement is true, since

we could take, for instance, n = —3, and then n would be less than every square, since squares are always
greater than or equal to 0.

c¢) Note the order of quantifiers: m here is allowed to depend on 7. Since we can take m = —n, this statement
is true (additive inverses exist for the integers).

d) Here one n must work for all m. Clearly n = 1 does the trick, so the statement is true.

e) The statement is that the equation n? +m? =5 has a solution over the integers. This is true; in fact there
are eight solutions, namely n = 41, m = £2, and vice versa.

f) The statement is that the equation n? + m? = 6 has a solution over the integers. There are only a small
finite number of cases to try, since if |m| or |n| were bigger than 2 then the left-hand side would be bigger
than 6. A few minutes reflection shows that in fact there is no solution, so the existential statement is false.
g) The statement is that the system of equations {n +m = 4, n —m = 1} has a solution over the integers.
By algebra we see that there is a unique solution to this system, namely n = 2%, m = 1%. Since there do not
exist integers that make the equations true, the statement is false.

h) The statement is that the system of equations {n +m = 4, n —m = 2} has a solution over the integers.
By algebra we see that there is indeed an integral solution to this system, namely n = 3, m = 1. Therefore
the statement is true.

i) This statement says that the average of two integers is always an integer. If we take m = 1 and n = 2,

for example, then the only p for which p = (m +n)/2 is p = 1%, which is not an integer. Therefore the
statement is false.



45. This statement says that every number has a multiplicative inverse.
a) In the universe of nonzero real numbers, this is certainly true. In each case we let y=1/z.

b) Integers usually don’t have inverses that are integers. If we let z = 3,1t

hen no integer y satisfies zy = 1.
Thus in this setting, the statement is false. '

c) As in part (a) this is true, since 1/z is positive when z is positive.

9. a) Because it was sunny on Tuesday, we assume that it did not rain or snow on Tuesday (otherwise we cannot
do anything with this problem). If we use modus tollens on the universal instantiation of the given conditional
statement applied to Tuesday, then we conclude that I did not take Tuesday off. If we now apply disjunctive
syllogism to the disjunction in light of this conclusion, we see that I took Thursday off. Now use modus
ponens on the universal instantiation of the given conditional statement applied to Thursday; we conclude
that it rained or snowed on Thursday. One more application of disjunctive syllogism tells us that it rained on
Thursday.

b) Using modus tollens we conclude two things—that I did not eat spicy food and that it did not thunder.
Therefore by the conjunction rule of inference (Table 1), we conclude “I did not eat spicy food and it did not
thunder.”

¢) By disjunctive syllogism from the first two hypotheses we conclude that I am clever. The third hypothesis
gives us no useful information.

d) We can apply universal instantiation to the conditional statement and conclude that if Ralph (respectively,
Ann) is a CS major, then he (she) has a PC. Now modus tollens tells us that Ralph is not a CS major. There
are no conclusions to be drawn about Ann.

e) The first two conditional statements can be phrased as “If z is good for corporations, then z is good for
the U.S.” and “If = is good for the U.S., then z is good for you.” If we now apply universal instantiation
with z being “for you to buy lots of stuff,” then we can conclude using modus ponens twice that for you to
buy lots of stuff is good for the U.S. and is good for you.

f) The given conditional statement is “For all z, if z is a rodent, then = gnaws its food.” We can form the
universal instantiation of this with = being a mouse, a rabbit, and a bat. Then modus ponens allows us to
conclude that mice gnaw their food; and modus tollens allows us to conclude that rabbits are not rodents. We
can conclude nothing about bats.

15. a) This is correct, using universal instantiation and modus ponens.
b) This is invalid. After applying universal instantiation, it contains the fallacy of affirming the conclusion.

c) This is invalid. After applying universal instantiation, it contains the fallacy of denying the hypothesis.
d) This is valid by universal instantiation and modus tollens.

19. a) This is the fallacy of affirming the conclusion, since it has the form “p — q and ¢ implies p.”
b) This reasoning is valid; it is modus tollens.

c) This is the fallacy of denying the hypothesis, since it has the form “p — ¢ and -p implies —¢q.”

24. Steps 3 and 5 are incorrect; simplification applies to conjunctions, not disjunctions.

27. We can set this up in two-column format.

Step Reason

1. Vz(P(z) A R(z)) Premise

2. P(a) A R(a) Universal instantiation using (1)

3. P(a) Simplification using (2)

4. Yz(P(z) — (Q(z) A S(z))) Premise ”

5. Q(a) A S(a) Universal modus ponens using (3) and (4)
6. S(a) Simplification using (5)

7. R(a) Simplification using (2)

8. R(a) A S(a) Conjunction using (7) and (6)

9. Vz(R(z) A S(z)) Universal generalization using (5)



6. An odd number is one of the form 2n + 1, where n is an integer. We are given two odd numbers, say 2a + 1
and 2b+ 1. Their product is (2a +1)(2b+ 1) = 4ab + 2a 4 2b+ 1 = 2(2ab + a + b) + 1. This last expression
shows that the product is odd, since it is of the form 2n + 1, with n = 2ab +a +b.

15. We will prove the contrapositive (that if it is not true that # > 1 or y > 1, then it is not true that z+y > 2),
using a direct argument. Assume that it is not true that © > 1 or y > 1. Then (by De Morgan’s law) z < 1

and y < 1. Adding these two inequalities, we obtain z +y < 2. This is the negation of = +y > 2, and our
proof is complete.

17. a) We must prove the contrapositive: If n is odd, then n® + 5 is even. Assume that n is odd. Then we can
write n = 2k+1 for some integer k. Then nd+5 = (2k+1)3+5 = 8k3+ 12k + 6k +6 = 2(4k® +6k2 +3k+3).
Thus n® + 5 is two times some integer, so it is even.

b) Suppose that n® + 5 is odd and that n is odd. Since n is odd, and the product of odd numbers is odd,
in two steps we see that n3 is odd. But then subtracting we conclude that 5, being the difference of the two

odd numbers 73 4 5 and n%, is even. This is not true. Therefore our supposition was wrong, and the proof
by contradiction is complete.

26. We need to prove two things, since this is an “if and only if” statement. First let us prove directly that
if n is even then 7n + 4 is even. Since n is even, it can be written as 2k for some integer k. Then
Tn+4 = 14k + 4 = 2(7k +2). This is 2 times an integer, so it is even, as desired. Next we give a proof by
contraposition that if 7n + 4 is even then n is even. So suppose that n is not even, i.e., that n is odd. Then

" n can be written as 2k + 1 for some integer k. Thus 7n +4 = 14k + 11 = 2(7Tk +5) + 1. This is 1 more than
2 times an integer, so it is odd. That completes the proof by contraposition.

29. This proposition is true. We give a proof by contradiction. Suppose that m is neither 1 nor —1. Then mn
has a factor (namely |m|) larger than 1. On the other hand, mn = 1, and 1 clearly has no such factor.
Therefore we conclude that m = 1 or m = —1. It is then immediate that n = 1 in the first case and n = —1
in the second case, since mn = 1 implies that n = 1/m.

33. It is easiest to give proofs by contraposition of (i) — (ii), (i4) — (i), (¢) — (44), and (i) — (i). For the
first of these, suppose that 3z + 2 is rational, namely equal to p/q for some integers p and ¢ with ¢ # 0.
Then we can write z = ((p/q) — 2)/3 = (» — 2¢)/(3q), where 3¢ # 0. This shows that z is rational. For
the second conditional statement, suppose that @ is rational, namely equal to p/q for some integers p and ¢
with ¢ # 0. Then we can write 3z 4+ 2 = (3p + 2¢)/q, where ¢ # 0. This shows that 3z + 2 is rational. For
the third conditional statement, suppose that 2/2 is rational, namely equal to p/q for some integers p and ¢
with ¢ # 0. Then we can write z = 2p/q, where ¢ # 0. This shows that z is rational. And for the fourth
conditional statement, suppose that = is rational, namely equal to p/q for some integers p and ¢ with ¢ == 0.
Then we can write z/2 = p/(2q), where 2¢ # 0. This shows that 2/2 is rational.



