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Functions as Power Series (6.1)
Convergence/Properties of Power Series (6.2)

Recall:
From the geometric series test:
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Find the power series representation of the function f(x) =
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Example.

Find the power series representation of the function f(x) = % = %
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Example.
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Find the power series representation for the function f(x) =

The constant in the denominator is not 1. Multiply by something to make that constant =1.
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Example.
Find the power series representation of the function f(x) = 3x4_1
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So far, all of our examples have been centered at c=0.
We can expand our power series at points other than 0.

Example.
Find the power series representation of the function f(x) = i
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If | center the power series at another point, other than 0, | can replace x in the power series with a
linear expression in x, (x-c)

a=1Lr=0-x)=(C-D(x-1)

) = Y UEDE- DI = ) (<D= 1"
n=0 n=0



Q-

(.\'—1)2— (‘\'—1)3 + («\'—1)4 - (.\'—1)5

Example.

Find the power series representation of the function f(x) = %, centered at x = 4.

5 5 5 5 (_ i) (_ %)

_ _ _ L 10) _
2—3x 2-3(x—4)—-12 2-3x+12-12 -10-3(x—4) (_1_10)_1+1%(x_4)
az—z,r——lio(x—él)
=2 (el < XD o= 3 o

We can adjust the constant in the denominator to match the formula (1- something)
We can shift the center off of zero
We can fix the minus sign if we have (1+ something)

We can also find power series formulas for functions whose derivatives are rational expressions.

These include f(x) = Inx, g(x) = arctanx
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Then, find a power series representation for the derivative

Then, take the antiderivative to obtain the power series for the original function.

First take the derivative of the target function: g'(x) =
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Additional formulas can be obtained by taking the derivative of our initial power series formula.
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Take the derivative on both sides with respect to .
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Reindexing: replacing n with k+1
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And so on... and each time reindex the starting value to start at 0.
Replace n = k+2
Replace n=k+3

Example.
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Find a power series representation for the function f(x) =

Notice that the denominator is raised (all of it) to a cube power.
The derivative is for a rational expression with the entire denominator raised to the cube power.
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Example.
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Find the power series representation of the function f(x) = (Zg_c—x)z
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Example.
Sometimes this means you may have to complete the square.

Find the power series representation of the function f(x) = m
You cannot let r = —4x — x2
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Testing for convergence of power series:
See the end of the last class notes for finding the interval and radius of convergence.



