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Review of series tests to date
Ratio and Root Tests

So, far, we have 8 series test:
1) Geometric series test (if it converges, we can find the exact sum)
2) Telescoping series test (if it converges, we can find the exact sum)
3) Divergence test — only tests for divergence, not convergence
4) Integral test — (we can estimate the error on the sum after N terms)
5) P-series test — powers of n in the denominator
6) Alternating series test — (we can estimate the error on the sum after N terms)
7) Direct Comparison Test
8) Limit Comparison Test

The last two series test that we have to cover are the ratio and root tests.
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We know from the integral test that the harmonic series diverges, and the second one (a p-series)
converges.
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Typically, the ratio test does poorly with polynomial or rational function terms.
Does a good job with anything raised to a power of n, and factorials.

Examples.
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Converges by the ratio test.
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e > 1, so the series diverges

Root Test
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Given the series )51 a,, if the rlll—r)go "/la,| < 1 the series converges, and if 711_{{)10 Yla,| > 1, the series
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diverges. And if Tlll_r)l(’)lo v |a,| = 1 the test is inconclusive.
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The root test also tends to be inconclusive with rational and polynomial terms.
Root test is messy to use on factorials — you would need to use a replacement approximation that relates
factorials to an exponential expression. | recommend using the ratio test for anything that has a factorial

in it.

Geometric combined with polynomial components, or expressions raised to a common power of n are

the best for the root test.
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Converges by the root test.
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Converges by the root test.
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Diverges by the root test.

Power Series
Infinite series where there is an x raised to the nth power in the expression.
For what values of x does the series converge?
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In the limit, think about x as any fixed value, and so n will (eventually) be bigger than x and the limit will
goto 0.

Where does this converge? It converges for all real numbers, and the radius of convergence here is
infinity.

Example.
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Radius of convergence: 3
-1<x<5

Interval of convergence is (-1,5) ... so far.

If the series converges on an interval (a,b), the radius of convergence is b%a
5—-(-1) _ 6
2 2
We need to test the endpoints where the ratio test =1 by another test.
Test x=-1, and x=5
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This converges by the alternating series test.

Check x=5
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By the limit comparison test




, 1. . . .
They converge or diverge together and Y5 - diverges by the p-series test (or the integral test), so this
also diverges.

The final interval of convergence is [—1,5)

It is possible to have intervals of convergence that are open on both ends (a,b), or closed on one end and
not the other (a,b], or [a,b), or converge on both ends [a,b].

Typically depends if there is an extra n term in the denominator:
No n means both endpoints will diverge (or in the numerator)
One n means one but not the other will converge

n? or higher, then both ends will converge



