
Week 4 Code Examples, CSC 400, Spring 2024

1. Ensemble Methods
a. Adaboost
b. GBM
c. XGBoost

2. Naïve Bayes
a. Gaussian
b. Multinomial
c. Bernoulli

3. K-mean
4. LDA (linear discriminant analysis)
5. Nearest Centroid classifier
6. Visualization

Adaboost

We’ll start with an example with the iris dataset.

We’ll split into testing and training sets, and then build our model.

Then we can test the model and see how we did on the test set.

GBM

We’ll start by installing several packages (some just for visualization), and import the data we’ll be using.
As with other applications, we’ll create a test and train split.

When we run the model, the session will use the multiple cores your computer is designed with instead
of just one. But depending on the size of your data and the speed of your machine, it may still take some
time to process. Since we are modeling sale price here, our example is a regression model and so uses
the Gaussian distribution. If you are doing binary classification, then choose binomial as your
distribution. See the documentation for other options (for example, count data may need a poisson
distribution).

Then we can assess the fit and the number of trees needed to optimize the model.

Typically, these ensemble methods have several hyperparameters that will need to be tuned to get the
best fit. In this next example, we’ll adjust the shrinkage to be a bit larger and reduce the number of
trees. Because the change in gradient is adjusted less slowly (more quickly), it requires fewer iterations
to get to the optimal solution in this example.

Because there is more than one parameter to tune, we need to find an efficient method of testing many
possible combinations.

In this case, we’ve set four parameters with three options each, leaving 34 = 81 possible combinations
in this example. If you thought the last model took a long time, this one will take longer.

After running the model, you’ll get a bunch of outputs that will allow you to narrow the range of values
tested in your hypergrid. This will allow you to home in on the best combination of parameters. Repeat
as necessary to get to your best model, then rerun your initial GBM model with those parameter
settings.

We can then test and visualize our final model.

The following method produces a really cool looking graph.

And we can make predictions with our model.

Our example is with regression, but this also works for classification, though you’ll use different metrics
for the model. The documentation for the package can help you update these settings.

XGBoost

We’ll look at an XGBoost model for classification using the iris dataset.

We’ve split into test and training sets. If you look at the data, you see that the fifth column is the
categorical variable, so we split that off as our output.

The XGBoost package uses a matrix format for the model building, so we need to convert our data to the
correct type.

Now we can build our model. We’ll start with a tree-depth of 3 and 50 iterations.

Then we can make our predictions on the test data and find the confusion matrix.

Naïve Bayes

We’ll start by importing packages, and then our data, which we’ll split into test and training data.

Then, we can inspect the data we want to model.

Next, we split the data into the inputs (x) and the outputs (y) to be predicted. We’ll use cross validation
to check our results.

Then we train the model and look at the confusion matrix.

We can adjust the model and retune it by adjusting hyperparameters. Then we look at the results to see
the best version of these parameters.

We can also look at the results graphically.

Once we have the best model on the training data, we can look at the test data and compare to
predictions.

A brief example of how we can make this a gaussian naïve bayes model is shown below with some
fabricated data.

We can look at a similar process for a multinomial naïve bayes model with simulated data.

And a similar example with Bernoulli Naïve Bayes with a simulated example.

K-Means

While this algorithm is technically a clustering algorithm, it is often used in a semi-supervised fashion as
a classification algorithm. We can check its accuracy against the original classification labels after
clustering. The number of classes tells us how to set k in this context. Without those labels, we’d need to
experiment with the value to k to find the best model (which we’ll talk about more when we do
clustering).

Our example will be on the iris dataset, and we’ll remove the initial species labels and compare them to
our results later on.

We can run the model with k=3 since there are three species. Then look the confusion matrix to see how
things line up.

One issue here is that the numbering of the clusters may not line up optimally with the named labels, so
we’ll have to match the ones that produce the best fit with the data.

We want to visualize the data and the data centers (against two of the variables).

Linear Discriminant Analysis (LDA)

This algorithm should not be confused with the other LDA—Latent Dirichlet Allocation. To use this
algorithm, we’ll run it on the same iris dataset as above.

Create a test and training set and run the model on the training data.

One of the graphs we want to use needs to be installed a little differently.

And we can make some partition plots.

Let’s also look at the confusion matrix and accuracy for both the training data and the test data.

Nearest Centroid Classifier

For our example, we’ll import libraries and create some simulated data to model. We’ll also plot the data
to take a look at it before we model.

We model the data with the nearest centroid classifier. We plot the results afterwards.

Then we make predictions based on the centers. We can look at how the data is classified from this
process.

From here, we’d want to compare the predictions to the original classifications with a confusion matrix.
The nearest centroid classifier tends to be more accurate when the classes have greater separation
between them, as one might expect.

Resources:

1. https://www.projectpro.io/recipes/apply-adaboost-or-classification-r
2. https://rpubs.com/praveen_jalaja/adaboosting
3. https://uc-r.github.io/gbm_regression
4. https://www.projectpro.io/recipes/apply-xgboost-for-classification-r
5. https://www.r-bloggers.com/2021/04/naive-bayes-classification-in-r/
6. https://uc-r.github.io/naive_bayes
7. https://search.r-project.org/CRAN/refmans/naivebayes/html/gaussian_naive_bayes.html
8. https://search.r-project.org/CRAN/refmans/naivebayes/html/multinomial_naive_bayes.html
9. https://search.r-project.org/CRAN/refmans/naivebayes/html/bernoulli_naive_bayes.html
10. https://www.datacamp.com/tutorial/k-means-clustering-r
11. https://www.r-bloggers.com/2021/05/linear-discriminant-analysis-in-r/
12. https://fawda123.github.io/ggord/
13. https://cran.r-hub.io/web/packages/lolR/vignettes/nearestCentroid.html

https://www.projectpro.io/recipes/apply-adaboost-or-classification-r
https://rpubs.com/praveen_jalaja/adaboosting
https://uc-r.github.io/gbm_regression
https://www.projectpro.io/recipes/apply-xgboost-for-classification-r
https://www.r-bloggers.com/2021/04/naive-bayes-classification-in-r/
https://uc-r.github.io/naive_bayes
https://search.r-project.org/CRAN/refmans/naivebayes/html/gaussian_naive_bayes.html
https://search.r-project.org/CRAN/refmans/naivebayes/html/multinomial_naive_bayes.html
https://search.r-project.org/CRAN/refmans/naivebayes/html/bernoulli_naive_bayes.html
https://www.datacamp.com/tutorial/k-means-clustering-r
https://www.r-bloggers.com/2021/05/linear-discriminant-analysis-in-r/
https://fawda123.github.io/ggord/
https://cran.r-hub.io/web/packages/lolR/vignettes/nearestCentroid.html

