
Lecture 11

DBSCAN, BIRCH, SOM

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a powerful and flexible
clustering algorithm commonly used in data mining and machine learning. Unlike K-Means, which
assumes that clusters are spherical and equally sized, DBSCAN can discover clusters of arbitrary shapes
and is robust to noise in the data. It works by identifying dense regions of data points separated by
sparser regions. Here's how DBSCAN works:

1. Core Point: DBSCAN relies on two parameters: a distance metric (𝜀) and the minimum number of data
points (MinPtsMinPts) required to form a dense region. A data point is considered a core point if there
are at least MinPtsMinPts data points (including itself) within a distance of 𝜀 from it.

2. Border Point: A data point is considered a border point if it is within 𝜀 distance from a core point but
does not meet the MinPtsMinPts requirement itself.

3. Noise Point: Data points that are neither core points nor border points are classified as noise points.

4. Cluster Formation: DBSCAN starts by selecting an arbitrary data point. If it's a core point, a new cluster
is created. The algorithm expands the cluster by adding all directly reachable core points to it. The
algorithm continues to expand the cluster until no more core points can be added. If a border point is
reached, it is added to the cluster as well, but the expansion of the cluster stops in that direction. The
algorithm then selects another unvisited data point and repeats the process until all data points are
visited.

5. Handling Noise: Noise points are data points that do not belong to any cluster. They are often
associated with outliers or noise in the dataset.

Key Considerations:

• The choice of 𝜀 and MinPtsMinPts is crucial. Smaller 𝜀 values result in more fine-grained clusters,
while larger 𝜀 values may merge clusters. Setting MinPtsMinPts too low can lead to excessive
noise, while setting it too high may result in large clusters.

• DBSCAN is capable of handling clusters of different shapes, sizes, and densities. It can identify
clusters within clusters (nested clusters).

• The order in which data points are processed does not affect the final clustering result.

• The number of clusters is not predetermined; DBSCAN can discover an arbitrary number of
clusters based on the data's density distribution.

• DBSCAN is less sensitive to the initial choice of parameters compared to K-Means.

• It's suitable for both numerical and categorical data, with appropriate distance metrics.

• DBSCAN is computationally efficient and can handle large datasets effectively.

DBSCAN is a versatile clustering algorithm used in various applications, including anomaly detection,
image segmentation, customer segmentation, and geographic data analysis. Its ability to uncover
complex cluster structures makes it particularly valuable in situations where other clustering methods
may struggle.

An example of how to use the DBSCAN clustering algorithm in R. In this example, we'll generate
synthetic data and apply DBSCAN to cluster the data points. For demonstration purposes, we'll use the
popular dbscan package in R. To get started, make sure you have the dbscan package installed. You can
install it using the following command if you haven't already:

Now, let's create a synthetic dataset and perform DBSCAN clustering:

Load the dbscan library

library(dbscan)

Generate synthetic data with two clusters and some noise

set.seed(123)

data <- rbind(matrix(rnorm(200, mean = c(2, 2), sd = 0.2), ncol = 2),

Cluster 1

matrix(rnorm(200, mean = c(6, 6), sd = 0.2), ncol = 2), # Cluster 2

matrix(rnorm(20, mean = c(4, 4), sd = 2), ncol = 2) # Noise

)

Perform DBSCAN clustering

dbscan_result <- dbscan(data, eps = 0.5, MinPts = 5)

Display cluster assignments

cluster_assignments <- dbscan_result$cluster

print(cluster_assignments)

Plot the data points colored by cluster

plot(data, col = cluster_assignments, pch = 19, main = "DBSCAN

Clustering Example", xlab = "X", ylab = "Y") legend("topright", legend

= unique(cluster_assignments), col = 1:max(cluster_assignments), pch =

19)

In this code, we: Load the dbscan library. Generate a synthetic dataset with two distinct clusters and
some noise points. Perform DBSCAN clustering on the synthetic data using the dbscan function. We
specify the distance parameter (eps) and the minimum number of points for a cluster (MinPts). Display
the cluster assignments. Create a scatter plot of the data points, with each point colored according to its
assigned cluster. We also add a legend for cluster labels.

When you run this code, you will see a scatter plot of the synthetic data points, each colored by its
DBSCAN-assigned cluster label. The DBSCAN algorithm has effectively separated the two main clusters
and identified the noise points as outliers.

You can experiment with different parameter values, such as eps and MinPts, to see how they affect the
clustering results and the identification of noise points.

BIRCH, which stands for Balanced Iterative Reducing and Clustering using Hierarchies, is a hierarchical
clustering algorithm designed for efficiently clustering large datasets with a focus on memory and speed
efficiency. BIRCH is especially well-suited for datasets that do not fit entirely into memory, making it a
scalable clustering technique. Here's how BIRCH works:

Basic Procedure:
Initialization: BIRCH begins by constructing a balanced tree structure called the CF (Clustering Feature)
Tree. The CF Tree is used to represent the data distribution efficiently while minimizing memory usage.

Clustering Features: BIRCH relies on a set of clustering features, which are summarized information
about the data points in the dataset. Each data point contributes to the clustering features, which
include the count of data points, the linear sum, and the squared sum of data points within a subcluster.
These features are stored in the CF Tree.

Insertion into the CF Tree: As data points are read sequentially, BIRCH inserts them into the CF Tree. The
tree nodes maintain information about the current subcluster and its clustering features.

Splitting and Merging: The CF Tree is updated dynamically as data points are inserted. When a node
reaches its capacity limit, it is split into two subclusters. Subclusters that are close to each other may be
merged to maintain a balanced tree structure.

Global Clustering: Once all data points have been processed, BIRCH constructs global clusters by
traversing the CF Tree, merging subclusters with similar clustering features and eliminating noise
clusters.

Key Considerations:

• BIRCH is designed to be memory-efficient, as it stores summary information about data points in
the CF Tree rather than the data points themselves.

• The number of clusters is determined based on the properties of the CF Tree and the desired
clustering threshold. BIRCH can adapt to the underlying data distribution.

• BIRCH is useful for clustering large datasets where keeping the entire dataset in memory is not
feasible.

• BIRCH is sensitive to the choice of parameters, such as the branching factor of the CF Tree and
the clustering threshold.

• It is particularly effective in the preprocessing step for larger datasets before applying more
detailed clustering algorithms, such as hierarchical or K-Means clustering.

Applications:
BIRCH is used in various applications, including text clustering, image segmentation, and data mining
tasks where datasets are too large to fit in memory. It provides a memory-efficient way to perform
preliminary clustering on such datasets, allowing for further analysis and exploration.

The R language does not have a built-in package for BIRCH clustering. The BIRCH algorithm is not as
commonly implemented in R as some other clustering algorithms like K-Means or hierarchical clustering.
However, I can provide you with a high-level description of how to use BIRCH clustering and the kind of
steps you would follow if you were to implement it yourself in R.

Data Preparation: First, you would need to load and prepare your dataset. Ensure that your data is in a
suitable format and that you've identified the features to cluster on.

BIRCH Parameters: Define the parameters for BIRCH, which typically include the branching factor (the
maximum number of subclusters in each node) and the clustering threshold (a measure of cluster quality
or similarity that determines whether two subclusters should be merged). You need to determine
appropriate values for these parameters based on your data and clustering goals.

BIRCH Tree Construction: Implement the logic to construct the BIRCH tree data structure. As data points
are read sequentially from your dataset, insert them into the tree, and handle node splitting and
merging as necessary to maintain a balanced tree structure.

Global Clustering: Once you've inserted all data points and constructed the BIRCH tree, you would
traverse the tree to perform global clustering. This involves merging subclusters with similar features and
eliminating noise clusters.

Cluster Visualization and Analysis: After the clustering is complete, you can visualize and analyze the
resulting clusters as needed for your specific application.

For those who want to experiment with BIRCH clustering, it's worth exploring whether other machine
learning libraries or tools support BIRCH. Available R packages and their features are being updated all
the time.

Self-Organizing Maps (SOM), also known as Kohonen maps, are a type of artificial neural network that is
used for clustering, visualization, and dimensionality reduction of high-dimensional data. SOMs are
particularly useful for identifying patterns and relationships in data. Here's how Self-Organizing Maps
work:

Basic Structure: A SOM consists of a grid of nodes, typically organized as a two-dimensional grid, but
other arrangements are possible. Each node in the grid is associated with a weight vector of the same
dimension as the input data. These weight vectors are initialized randomly or with small random values.
SOMs are unsupervised learning models, meaning they do not require labeled training data. They learn
from the input data without external guidance.

Learning Process: Initialization: Start by initializing the SOM with a grid of nodes and random weight
vectors.

Input Data Presentation: For each input data point in your dataset, the SOM finds the node with the
closest weight vector to the input data point. This is done by computing the distance (e.g., Euclidean
distance) between the input data point and the weight vectors of all nodes.

Winner Node Selection: The node with the closest weight vector is known as the "winner" or "best-
matching unit" (BMU). The BMU is the node whose weight vector is most similar to the input data point.

Weight Vector Update: Update the weight vectors of the BMU and its neighboring nodes. The weight
vectors of nodes near the BMU are adjusted to be more similar to the input data point. The magnitude
of adjustment decreases with the distance from the BMU. This process encourages nearby nodes to
adapt their weight vectors to represent similar data patterns.

Iterative Learning: Repeat steps 3 and 4 for each input data point in your dataset. This process may
involve multiple iterations or epochs.

Visualization and Clustering: After training, SOMs can be used for visualization, clustering, or
dimensionality reduction. Nodes with similar weight vectors are more likely to be close to each other in
the SOM grid, making them candidates for forming clusters.

Key Considerations:

• SOMs are capable of revealing underlying structures and relationships in the data, making them
suitable for exploratory data analysis and visualization.

• The size and topology of the SOM grid are crucial parameters that influence the quality of the
clustering and visualization. Smaller grids may oversimplify the data, while larger grids can
overfit.

• SOMs can be used in a wide range of applications, including image processing, data mining, and
pattern recognition.

• SOMs can be sensitive to the initialization of weight vectors, which may affect the quality of the
learned representation.

• SOMs can be adapted for online learning or batch learning, depending on the specific problem.

Applications: Self-Organizing Maps find applications in a variety of fields, including data visualization,
image analysis, speech recognition, and feature extraction. They are particularly valuable when dealing
with high-dimensional data and exploring complex patterns within it.

A simple example of creating and training a Self-Organizing Map (SOM) using the kohonen package in R.
In this example, we'll use a synthetic dataset to demonstrate how a SOM can help identify clusters and
visualize the data. First, make sure you have the kohonen package installed. You can install it using the
following command if you haven't already:

Now, let's create a synthetic dataset, train a SOM, and visualize the results:

Load the kohonen library

library(kohonen)

Create a synthetic dataset

set.seed(123)

data <- matrix(rnorm(200, mean = c(0, 0), sd = 1), ncol = 2)

data <- rbind(data, matrix(rnorm(200, mean = c(4, 4), sd = 1), ncol =

2))

Normalize the data

data <- scale(data)

Define the SOM grid dimensions

grid_rows <- 10 grid_cols <- 10

Create and initialize the SOM

som_grid <- somgrid(xdim = grid_rows, ydim = grid_cols, topo =

"rectangular")

som_model <- som(data, grid = som_grid, rlen = 100, alpha = c(0.05,

0.01))

Plot the SOM results

plot(som_model, type = "property", property = 1, main = "SOM

Clustering Example")

plot(som_model, type = "mapping", pchs = 20, main = "SOM Clustering

Example")

In this R code, we: Load the kohonen library, which provides functions for working with SOMs. Create a
synthetic dataset with two clusters. The dataset consists of 400 data points (200 in each cluster) with
different means and standard deviations. Normalize the data to have a mean of 0 and a standard
deviation of 1. Define the dimensions of the SOM grid. In this example, we use a 10x10 grid. Create and

initialize the SOM using the somgrid function to specify the grid dimensions. We then train the SOM
using the som function. The rlen parameter controls the number of training iterations, and alpha
controls the learning rate decay. Finally, we visualize the results of the SOM. The first plot displays cluster
properties, while the second plot shows data points mapped onto the SOM grid.

When you run this code, you will see two plots. The first plot represents the SOM's cluster properties,
showing how the SOM has grouped data points into clusters. The second plot displays data points as
they are mapped onto the SOM grid, helping you visualize the relationships between data points.

You can experiment with different datasets, grid dimensions, and training parameters to see how the
SOM adapts to different data distributions.

Resources:

1. https://www.geeksforgeeks.org/dbscan-clustering-in-r-programming/#
2. http://www.sthda.com/english/wiki/wiki.php?id_contents=7940
3. https://rpubs.com/datalowe/dbscan-simple-example
4. https://www.datanovia.com/en/lessons/dbscan-density-based-clustering-essentials/
5. https://www.kaggle.com/code/pmcgovern/dbscan-example-in-r
6. https://rdrr.io/cran/stream/man/DSC_BIRCH.html
7. https://medium.com/@noel.cs21/balanced-iterative-reducing-and-clustering-using-heirachies-

birch-5680adffaa58
8. https://www.geeksforgeeks.org/ml-birch-clustering/
9. https://www.polarmicrobes.org/tutorial-self-organizing-maps-in-r/
10. https://www.r-bloggers.com/2014/02/self-organising-maps-for-customer-segmentation-using-r/
11. https://rpubs.com/AlgoritmaAcademy/som
12. https://raraasnawi.medium.com/self-organizing-map-som-with-rstudio-81b5c5713f54
13. https://en.proft.me/2016/11/29/modeling-self-organising-maps-r/

https://www.geeksforgeeks.org/dbscan-clustering-in-r-programming/
http://www.sthda.com/english/wiki/wiki.php?id_contents=7940
https://rpubs.com/datalowe/dbscan-simple-example
https://www.datanovia.com/en/lessons/dbscan-density-based-clustering-essentials/
https://www.kaggle.com/code/pmcgovern/dbscan-example-in-r
https://rdrr.io/cran/stream/man/DSC_BIRCH.html
https://medium.com/@noel.cs21/balanced-iterative-reducing-and-clustering-using-heirachies-birch-5680adffaa58
https://medium.com/@noel.cs21/balanced-iterative-reducing-and-clustering-using-heirachies-birch-5680adffaa58
https://www.geeksforgeeks.org/ml-birch-clustering/
https://www.polarmicrobes.org/tutorial-self-organizing-maps-in-r/
https://www.r-bloggers.com/2014/02/self-organising-maps-for-customer-segmentation-using-r/
https://rpubs.com/AlgoritmaAcademy/som
https://raraasnawi.medium.com/self-organizing-map-som-with-rstudio-81b5c5713f54
https://en.proft.me/2016/11/29/modeling-self-organising-maps-r/

