Instructions: Answer each question as thoroughly as possible. Round answers to 4 decimal places as needed. Exact answers are best when possible. Be sure to answer all parts of each question.

1. Consider the data below where x_1 is furnace temperature and x_2 is die close time, and y is temperature difference on the die cast.

χ_1	1332	1393	1399	1259	1340	1314	1335	1431	1423
<i>x</i> ₂	6.16	8.86	9.11	8.50	8.94	14.27	11.61	8.88	10.64
y	85.74	102.54	106.84	86.06	95.02	91.54	100.67	108.70	109.78

a. Enter the data in R and find the correlation between pairs of three variables.

X12X2 → 0.0702

X, y → 0.9057

X2, y -> 0.1699

b. Create a multiple regression model of y using the two independent variables. Describe your model test and test of each coefficient. Ho: β,=0, Ha: β, ≠0 p-value = 0.0007 veyet null Ho:βz=0, Ha: βz≠0 p value = 0.1559 fail to reget null

c. Write the equation of your final, best-fit model.

Y = 0.4940 X1 - 104. 411

d. What proportion of the variability in y can be explained by the model?

82.03%

e. Create a 90% confidence interval for β_2 .

Br was kicked out of the model CI includes O

- f. Create residual plots against both independent variables to test model assumptions.
- g. Predict y when x_1 is 1305 and x_2 is 8.1. Construct a 95% prediction interval around your mean prediction.

 Center 90.55568 (80. 53264, 100. 5793)

Include all graphs and model output to support your answers.

