
Lecture B 
 
Machine Learning Methods (Selection) 
 
K-Nearest Neighbors 
K-Means 
Support Vector Machines 
Decision Trees 
 
K-Nearest Neighbors (KNN) is a popular supervised machine learning algorithm used for classification 
and regression tasks. It is a non-parametric algorithm, meaning it does not make any assumptions about 
the underlying data distribution. KNN is known as an instance-based learning algorithm because it makes 
predictions based on the similarity of new instances to existing instances in the training dataset. 
 
To implement KNN, we start with the Training Phase: During the training phase, KNN stores the entire 
training dataset, which consists of labeled instances. Each instance is represented by a set of features or 
attributes, and it is associated with a class label (in the case of classification) or a target value (in the case 
of regression). 
 
Choosing the Value of K: The algorithm requires the selection of a parameter called "K," which 
determines the number of nearest neighbors to consider for making predictions. The value of K is 
typically chosen based on the characteristics of the dataset and is often determined through 
experimentation or using cross-validation techniques. 
 
Prediction Phase (Classification): Given a new, unlabeled instance, the KNN algorithm searches for the K 
nearest neighbors in the training dataset. The distance metric used, such as Euclidean distance or 
Manhattan distance, measures the similarity between instances based on their feature values. The K 
nearest neighbors are the instances with the smallest distances to the new instance. 
 
Voting (Classification): Once the K nearest neighbors are identified, the algorithm assigns the class label 
to the new instance by majority voting. In other words, the class label that occurs most frequently 
among the K neighbors is chosen as the predicted class label for the new instance. 

 
 



Prediction Phase (Regression): In regression tasks, instead of voting, KNN takes an average (or weighted 
average) of the target values of the K nearest neighbors and assigns it as the predicted target value for 
the new instance. The averaging process provides a continuous prediction rather than a discrete class 
label. 
 
Model Evaluation: After making predictions for all instances in the test dataset, the performance of the 
KNN algorithm is evaluated using appropriate evaluation metrics such as accuracy, precision, recall, F1-
score (for classification), or mean squared error (for regression). 
 
Some important considerations when working with KNN: 
 

• KNN is a lazy learning algorithm because it does not require a training phase involving model 
parameter estimation. It makes predictions directly based on the training dataset. 

• The choice of the distance metric and the value of K significantly impact the algorithm's 
performance. Different distance metrics may be more appropriate for different types of data. 

• The computational complexity of the KNN algorithm can be high, particularly when dealing with 
large datasets. Efficient data structures like KD-trees or ball trees can be used to speed up the 
nearest neighbor search. 

• KNN can be sensitive to irrelevant and noisy features. Feature selection and dimensionality 
reduction techniques may be employed to improve the algorithm's performance. 

• The KNN algorithm does not provide insights into the underlying relationships or decision 
boundaries in the data. It is a simple yet effective algorithm for making predictions based on 
local similarities. 

 
Overall, KNN is a versatile and widely used algorithm that is suitable for various classification and 
regression tasks, especially when the underlying data distribution is not well-defined or when the 
dataset is relatively small. 
 
Implementing K-Nearest Neighbors (KNN) in R is relatively straightforward using the class package, which 
provides the knn function. Here's a simple example using a hypothetical dataset: 
 
# Install and load the 'class' package 
install.packages("class") 
library(class) 
 
# Create a hypothetical dataset. Skip this step if you have actual data 
set.seed(123) #for reproducibility 
data <- data.frame( 
  Feature1 = rnorm(50), 
  Feature2 = rnorm(50), 
  Class = c(rep("A", 25), rep("B", 25)) 
) 
 
# Split the dataset into training and testing sets 
train_indices <- sample(1:nrow(data), 30) 
train_data <- data[train_indices, ] 
test_data <- data[-train_indices, ] 
 



# Use KNN for classification 
k <- 3  #the choice of k is important. An odd number is preferred to avoid ties which produces instability 
predicted_classes <- knn(train = train_data[, c("Feature1", "Feature2")],  
                         test = test_data[, c("Feature1", "Feature2")],  
                         cl = train_data$Class,  
                         k = k) 
 
# Compare predicted classes to actual classes 
confusion_matrix <- table(predicted_classes, test_data$Class) 
print("Confusion Matrix:") 
print(confusion_matrix) 
 
# Calculate accuracy 
accuracy <- sum(diag(confusion_matrix)) / sum(confusion_matrix) 
print(paste("Accuracy:", accuracy)) 
Note: This is a basic example, and in a real-world scenario, you would typically perform more thorough 
data preprocessing, tune the hyperparameter (like k in KNN), and possibly use cross-validation for better 
evaluation. If the variables are not a consistent size, normalization is in order so that variables are on a 
similar scale. Alternative distance metrics are sometimes applied, but such alternatives typically have to 
be implemented by writing your own code. 
 
K-Means is an unsupervised machine learning algorithm used for clustering, which involves grouping 
similar instances together based on their features. The goal of K-Means is to partition a dataset into K 
distinct clusters, where each instance belongs to the cluster with the nearest mean (centroid). It is one of 
the most widely used clustering algorithms due to its simplicity and efficiency. 
 
How the K-Means algorithm works: 
 
Initialization: Initially, K centroids are randomly selected from the dataset. The number of centroids, K, is 
a parameter that needs to be defined beforehand. 
 
Assignment: Each instance in the dataset is assigned to the nearest centroid based on a distance metric, 
typically the Euclidean distance. This step is also known as the "assignment" or "expectation" step. 
 
Update: After assigning instances to clusters, the centroids of each cluster are updated by computing the 
mean (average) of all instances within that cluster. This step is also referred to as the "update" or 
"maximization" step. 
 
Iterations: Steps 2 and 3 are repeated iteratively until convergence. Convergence occurs when either the 
centroids stop moving significantly or a maximum number of iterations is reached. In each iteration, 
instances are reassigned to the nearest centroid, and the centroids are updated based on the reassigned 
instances. 
 
Final Result: Once the algorithm converges, the final result is a set of K clusters, each represented by its 
centroid. Each instance in the dataset is associated with the centroid of the cluster it belongs to. 
 
Choosing the Value of K: The value of K is an important parameter in K-Means and needs to be 
predefined. Selecting an appropriate value of K can be challenging and often involves using domain 



knowledge, visual inspection of the data, or techniques such as the elbow method or silhouette 
coefficient. 
 
K-Means is an iterative algorithm that aims to minimize the within-cluster sum of squares, also known as 
the distortion or inertia. It tries to make instances within the same cluster as similar as possible while 
keeping instances from different clusters as dissimilar as possible. 
 
The algorithm is sensitive to the initial random selection of centroids. Different initializations can lead to 
different results. To mitigate this, K-Means is often run multiple times with different initializations, and 
the best clustering result is selected based on a chosen criterion (e.g., the lowest distortion). 
 
K-Means is computationally efficient and scales well with large datasets. However, the algorithm's 
complexity increases with the number of instances and features, making it less suitable for high-
dimensional data. 
 
K-Means assumes that clusters are spherical, isotropic, and have equal variances. Thus, it may not 
perform well on datasets with irregularly shaped or overlapping clusters. 
 
Outliers can significantly affect the clustering results since they can disproportionately influence the 
centroid calculation. Preprocessing steps, such as outlier detection or data normalization, may be 
required to handle such situations. 
 
K-Means is widely used in various applications, such as customer segmentation, image compression, 
document clustering, and anomaly detection. Overall, K-Means is a popular and efficient algorithm for 
clustering unlabeled data. It provides a simple and interpretable solution for finding clusters based on 
the similarity of instances' feature values. 
 
Implementing k-means clustering in R is straightforward using the kmeans function, which is part of the 
base R package. Here's a simple example: 
 
# Generate a hypothetical dataset. Skip this step if you have a real dataset. We can also implement this 
with more than two variables. 
set.seed(123) #for reproducibility 
data <- data.frame( 
  x = rnorm(100, mean = 5), 
  y = rnorm(100, mean = 5) 
) 
 
# Perform k-means clustering with k=3 
k <- 3 #depends on the number of classes you have (or want) 
kmeans_result <- kmeans(data, centers = k, nstart = 20) 
 
# Display the cluster centers 
print("Cluster Centers:") 
print(kmeans_result$centers) 
 
# Assign each data point to a cluster 
cluster_assignments <- kmeans_result$cluster 



 
# Display the cluster assignments 
print("Cluster Assignments:") 
print(cluster_assignments) 
 
# Visualize the results 
plot(data, col = cluster_assignments, pch = 19, main = "K-Means Clustering") 
points(kmeans_result$centers, col = 1:k, pch = 3, cex = 2, lwd = 2) 
 
Data preprocessing, such as normalization, if often desirable. Like similar algorithms, alternative distance 
metrics may also be used. The default is Euclidean distance. 
 

 
 
Support Vector Machines (SVMs) are supervised machine learning algorithms used for both 
classification and regression tasks. SVMs aim to find the optimal hyperplane that maximally separates 
instances of different classes or predicts the target value with the largest margin. The key idea behind 
SVMs is to transform the input data into a high-dimensional feature space, where a linear decision 
boundary can be found. 



 
How SVMs are implemented: 
 
Data Preparation: SVMs require labeled training data, where each instance is associated with a class 
label (in the case of classification) or a target value (in the case of regression). The data is typically 
represented as a set of feature vectors, where each vector represents the values of the input features. 
 
Feature Mapping (Kernel Trick): SVMs often employ a technique called the "kernel trick" to implicitly 
map the original feature vectors into a higher-dimensional feature space. This mapping allows for the 
discovery of more complex decision boundaries that would be difficult to find in the original feature 
space. Common kernel functions include the linear kernel, polynomial kernel, radial basis function (RBF) 
kernel, and sigmoid kernel. 
 

→  
 
Optimization: The SVM algorithm formulates the task as an optimization problem. It aims to find the 
hyperplane that maximizes the margin between the closest instances of different classes (for 
classification) or minimizes the regression error (for regression). The optimization problem can be 
expressed as a quadratic programming (QP) problem or solved using optimization techniques like 
sequential minimal optimization (SMO). 



 
 
Parameter Selection: SVMs have two main parameters to tune: the regularization parameter C and the 
choice of kernel function (if a non-linear kernel is used). The regularization parameter, C, controls the 
trade-off between achieving a wider margin and allowing misclassifications. A smaller C allows for a 
larger margin but may lead to more misclassifications, while a larger C imposes a stricter penalty for 
misclassifications. The kernel function is chosen based on the characteristics of the data and the 
complexity of the decision boundary. 
 
Prediction: Once the SVM model is trained, it can be used for making predictions on new, unseen 
instances. For classification, the decision is made based on which side of the hyperplane the instance 
falls on. Positive values indicate one class, while negative values indicate the other class. For regression, 
the target value is predicted based on the distance from the hyperplane. 
 
Model Evaluation: The performance of an SVM model is typically evaluated using appropriate evaluation 
metrics such as accuracy, precision, recall, F1-score (for classification), or mean squared error (for 
regression). Cross-validation techniques can be employed to estimate the generalization performance of 
the model. 
 

• SVMs are effective in handling high-dimensional feature spaces, making them suitable for both 
linear and non-linear problems. 

• SVMs are robust to overfitting, thanks to the margin maximization objective and the 
regularization parameter C. 

• SVMs are sensitive to the choice of parameters, especially the regularization parameter C. 
Improper parameter selection can lead to poor generalization performance. 

• SVMs can be memory-intensive, especially when dealing with large datasets. Techniques like 
kernel approximation or support vector reduction can be employed to mitigate this issue. 



• SVMs are binary classifiers by default, but techniques like one-vs-all or one-vs-one can be used 
to extend them to multi-class classification problems. 

 
Overall, SVMs are powerful algorithms widely used in various machine learning tasks, including 
classification, regression, and anomaly detection. They offer robust performance, particularly in 
scenarios with a clear margin between classes or when non-linear decision boundaries are required. 
 
The e1071 package in R provides functions for Support Vector Machines (SVM). Here's a simple example 
using the built-in Iris dataset: 
 
# Install and load the 'e1071' package 
install.packages("e1071") 
library(e1071) 
 
# Load the Iris dataset 
data(iris) 
 
# Create a binary classification problem (setosa vs. non-setosa) 
iris_binary <- iris 
iris_binary$Species <- factor(ifelse(iris$Species == "setosa", "setosa", "non-setosa")) 
 
# Split the dataset into training and testing sets 
set.seed(123) 
indices <- sample(1:nrow(iris_binary), 0.7 * nrow(iris_binary)) 
train_data <- iris_binary[indices, ] 
test_data <- iris_binary[-indices, ] 
 
# Train an SVM model 
svm_model <- svm(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width, data = train_data, 
kernel = "linear") 
 
# Make predictions on the test set 
predictions <- predict(svm_model, test_data) 
 
# Evaluate the performance 
confusion_matrix <- table(predictions, test_data$Species) 
print("Confusion Matrix:") 
print(confusion_matrix) 
 
# Calculate accuracy 
accuracy <- sum(diag(confusion_matrix)) / sum(confusion_matrix) 
print(paste("Accuracy:", accuracy)) 
 
Note: SVMs offer various kernel options (linear, polynomial, radial basis function, etc.), and the choice of 
kernel depends on the nature of your data. Additionally, parameters like cost (C) can be tuned for better 
performance. 
 



Decision Trees are versatile supervised machine learning algorithms used for both classification and 
regression tasks. They create a model that predicts the target variable's value by learning simple decision 
rules inferred from the input features. Decision Trees are highly interpretable and can handle both 
numerical and categorical data. 
 
How Decision Trees are implemented: 
 
Data Preparation: Decision Trees require labeled training data, where each instance is associated with a 
class label (in the case of classification) or a target value (in the case of regression). The data is typically 
represented as a set of feature vectors, where each vector represents the values of the input features. 
 
Splitting Criteria: Decision Trees employ a splitting criterion to determine how to divide the data at each 
node of the tree. The most common splitting criteria are Gini impurity and entropy for classification tasks 
and mean squared error or mean absolute error for regression tasks. These criteria measure the 
homogeneity or impurity of a set of instances and help decide the best feature and split point for 
creating child nodes. 
 

 
 
Building the Tree: The construction of the Decision Tree starts with the root node, which represents the 
entire dataset. At each node, the algorithm selects the best feature and split point based on the chosen 
splitting criterion. This process is recursively applied to create child nodes, splitting the data into subsets 
based on the selected criteria until a stopping condition is met. Stopping conditions can include reaching 
a maximum depth, a minimum number of instances per node, or the inability to improve the splitting 
criterion significantly. 
 
Handling Categorical Features: Decision Trees can handle both numerical and categorical features. For 
categorical features, the algorithm typically performs a multi-way split, creating separate branches for 
each category. This process effectively partitions the data based on the feature's different categories. 
 



Pruning (Optional): Pruning is a technique used to prevent overfitting by reducing the complexity of the 
Decision Tree. It involves removing unnecessary branches or nodes that do not contribute significantly to 
the model's predictive power. Pruning can be done using approaches such as cost complexity pruning 
(also known as weakest link pruning) or reduced error pruning. 
 
Prediction: Once the Decision Tree is built, it can be used for making predictions on new, unseen 
instances. For classification, each instance is traversed through the tree, following the decision rules at 
each node until a leaf node is reached, which represents the predicted class label. For regression, the 
target value is determined based on the average or majority value of instances in the leaf node. 
 
Model Evaluation: The performance of the Decision Tree model is typically evaluated using appropriate 
evaluation metrics such as accuracy, precision, recall, F1-score (for classification), or mean squared error 
(for regression). Cross-validation techniques can be employed to estimate the generalization 
performance of the model. 
 
Some important considerations of Decision Trees: 
 

• Decision Trees are interpretable and provide insights into the decision-making process, as the 
rules learned can be easily visualized and understood. 

• Decision Trees can handle both categorical and numerical features, making them suitable for a 
wide range of data types. 

• Decision Trees can suffer from overfitting, especially when the tree grows deep or when dealing 
with noisy or sparse datasets. Pruning and other techniques can help mitigate this issue. 

• Decision Trees are prone to instability and can produce different trees when trained on slightly 
different datasets. Ensemble methods like Random Forests or Gradient Boosted Trees can help 
improve stability and predictive performance. 

• Decision Trees are computationally efficient for both training and prediction. However, their 
complexity can increase with the number of features or instances, making them less suitable for 
high-dimensional data. 

• Decision Trees can handle missing values by using strategies like surrogate splits or imputation 
techniques. 

• Decision Trees are sensitive to small changes in the data, which can lead to different splits and 
different results. Randomization techniques like feature bagging or random subspace can 
introduce variability to address this issue. 

 
Overall, Decision Trees are powerful and widely used algorithms in machine learning due to their 
simplicity, interpretability, and ability to handle both classification and regression tasks. 
 
The rpart package in R is commonly used for implementing decision trees. Here's a simple example using 
the built-in Iris dataset: 
 
# Install and load the 'rpart' package 
install.packages("rpart") 
library(rpart) 
 
# Load the Iris dataset 
data(iris) 



 
# Create a decision tree model 
tree_model <- rpart(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width, data = iris, 
method = "class") 
 
# Visualize the decision tree 
plot(tree_model) 
text(tree_model, cex = 0.8) 
 
# Make predictions on new data (e.g., using a subset of the original data for simplicity) 
new_data <- data.frame( 
  Sepal.Length = c(5.0, 6.5, 7.2), 
  Sepal.Width = c(3.0, 3.0, 3.1), 
  Petal.Length = c(1.5, 4.6, 6.0), 
  Petal.Width = c(0.2, 1.5, 2.5) 
) 
 
predictions <- predict(tree_model, newdata = new_data, type = "class") 
print("Predicted Species:") 
print(predictions) 
 
Note: Decision trees can be more complex, and you might want to consider tuning parameters or 
pruning the tree for better performance and interpretability in a real-world scenario (helps to avoid 
overfitting). 
 
More examples of all four algorithms are available in the resources below. 
 
Resources: 

1. https://www.datacamp.com/tutorial/k-nearest-neighbors-knn-classification-with-r-tutorial 
2. https://rpubs.com/pmtam/knn 
3. https://www.geeksforgeeks.org/k-nn-classifier-in-r-programming/ 
4. https://towardsdatascience.com/k-nearest-neighbors-algorithm-with-examples-in-r-simply-

explained-knn-1f2c88da405c 
5. https://www.analyticsvidhya.com/blog/2015/08/learning-concept-knn-algorithms-

programming/ 
6. https://www.edureka.co/blog/knn-algorithm-in-r/ 
7. https://www.datanovia.com/en/lessons/k-means-clustering-in-r-algorith-and-practical-

examples/ 
8. https://uc-r.github.io/kmeans_clustering 
9. https://www.datacamp.com/tutorial/k-means-clustering-r 
10. https://www.geeksforgeeks.org/k-means-clustering-in-r-programming/ 
11. https://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html 
12. https://www.datacamp.com/tutorial/support-vector-machines-r 
13. https://www.geeksforgeeks.org/classifying-data-using-support-vector-machinessvms-in-r/ 
14. https://uc-r.github.io/svm 
15. https://cran.r-project.org/web/packages/e1071/vignettes/svmdoc.pdf 
16. https://www.datacamp.com/tutorial/decision-trees-R 
17. https://www.r-bloggers.com/2021/04/decision-trees-in-r/ 

https://www.datacamp.com/tutorial/k-nearest-neighbors-knn-classification-with-r-tutorial
https://rpubs.com/pmtam/knn
https://www.geeksforgeeks.org/k-nn-classifier-in-r-programming/
https://towardsdatascience.com/k-nearest-neighbors-algorithm-with-examples-in-r-simply-explained-knn-1f2c88da405c
https://towardsdatascience.com/k-nearest-neighbors-algorithm-with-examples-in-r-simply-explained-knn-1f2c88da405c
https://www.analyticsvidhya.com/blog/2015/08/learning-concept-knn-algorithms-programming/
https://www.analyticsvidhya.com/blog/2015/08/learning-concept-knn-algorithms-programming/
https://www.edureka.co/blog/knn-algorithm-in-r/
https://www.datanovia.com/en/lessons/k-means-clustering-in-r-algorith-and-practical-examples/
https://www.datanovia.com/en/lessons/k-means-clustering-in-r-algorith-and-practical-examples/
https://uc-r.github.io/kmeans_clustering
https://www.datacamp.com/tutorial/k-means-clustering-r
https://www.geeksforgeeks.org/k-means-clustering-in-r-programming/
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html
https://www.datacamp.com/tutorial/support-vector-machines-r
https://www.geeksforgeeks.org/classifying-data-using-support-vector-machinessvms-in-r/
https://uc-r.github.io/svm
https://cran.r-project.org/web/packages/e1071/vignettes/svmdoc.pdf
https://www.datacamp.com/tutorial/decision-trees-R
https://www.r-bloggers.com/2021/04/decision-trees-in-r/


18. https://www.guru99.com/r-decision-trees.html 
19. https://community.rstudio.com/t/decision-tree-in-r/5561 
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