
Lecture 10 
 
Extensions of logistic regression 
In the last lecture, we considered single variable logistic regression. Today, we will look at extending the 
model to more than one explanatory variable. Recall the single-variable model we considered in the last 
class, predicting whether a car was American made or not based on mpg.  Let’s look at our summary 
output again. 
 
Call: 
glm(formula = am ~ mpg, family = "binomial", data = mtcars) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.5701  -0.7531  -0.4245   0.5866   2.0617   
 
Coefficients: 

             Estimate  Std. Error  z value  Pr(>|z|)    

(Intercept)   -6.6035      2.3514   -2.808   0.00498 ** 

mpg            0.3070      0.1148    2.673   0.00751 ** 

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 43.230  on 31  degrees of freedom 
Residual deviance: 29.675  on 30  degrees of freedom 
AIC: 33.675 
 
Number of Fisher Scoring iterations: 5 
 
Suppose that we wanted to extend our model to use hp (horsepower) in addition to mpg. 
 
Call: 
glm(formula = am ~ mpg + hp, family = "binomial", data = mtcars) 
 
Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-1.41460  -0.42809  -0.07021   0.16041   1.66500   
 
Coefficients: 

              Estimate  Std. Error  z value  Pr(>|z|)   

(Intercept)  -33.60517    15.07672   -2.229    0.0258 * 

mpg            1.25961     0.56747    2.220    0.0264 * 

hp             0.05504     0.02692    2.045    0.0409 * 

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 



(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 43.230  on 31  degrees of freedom 
Residual deviance: 19.233  on 29  degrees of freedom 
AIC: 25.233 
 
Number of Fisher Scoring iterations: 7 
 
In comparison with the previous model, the P-values of the coefficients have increased, but they remain 
significant. The residual deviance has decreased and so has the AIC, telling us that our model has 
improved. Model selection methods, such as stepwise, forward and backward selection can also be 
applied to multiple logistic regression. 
 
The logistic regression model uses a logistic function (sigmoid function) to transform a linear 
combination of the independent variables into a probability score between 0 and 1. The model 
estimates the coefficients (also called weights or parameters) of the independent variables, which 
represent the strength and direction of their relationship with the dependent variable. 
 
The logistic regression equation can be expressed as follows: 
 

𝑃(𝑦 = 1|𝑥1, 𝑥2, . . . , 𝑥𝑛) =  
1

1 +  𝑒−(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ...+ 𝛽𝑛𝑥𝑛)
 

 
where: 
 
𝑃(𝑦 = 1|𝑥1, 𝑥2, . . . , 𝑥𝑛) is the predicted probability of the dependent variable 𝑦 being 1 (i.e., the positive 
outcome) given the values of the independent variables 𝑥1, 𝑥2, . . . , 𝑥𝑛. 
 
𝛽0 is the intercept or bias term, which represents the predicted log-odds of the outcome variable when 
all the independent variables are zero. 
 
𝛽1, 𝛽2, . . . , 𝛽𝑛 are the coefficients or weights of the independent variables 𝑥1, 𝑥2, . . . , 𝑥𝑛, which indicate 
the change in the log-odds of the outcome variable for a unit change in the corresponding independent 
variable, holding all other variables constant. 
 
To estimate the coefficients, the logistic regression model uses maximum likelihood estimation, which 
seeks to find the values of the coefficients that maximize the likelihood of observing the given set of 
data. The model is evaluated based on its ability to correctly classify the observed data into the binary 
outcomes, using measures such as accuracy, sensitivity, specificity, and area under the receiver 
operating characteristic (ROC) curve. 
 
Null deviance is a statistical term used in logistic regression analysis that refers to the measure of the 
overall goodness-of-fit of a logistic regression model that includes only the intercept or the constant 
term, but no independent variables (also known as the "null model"). In other words, the null deviance 
represents the amount of variability in the dependent variable that can be explained by the intercept 
alone. 
 



The null deviance is computed as the difference between the deviance of the null model and the 
deviance of a model that assumes a perfect fit to the data. The deviance is a measure of how well the 
model fits the data, and it is calculated as minus two times the log-likelihood ratio of the model, 
compared to the perfect fit model. A smaller deviance value indicates a better fit of the model to the 
data. 
 
The null deviance is useful for assessing the significance of the independent variables included in the 
logistic regression model. It is compared to the residual deviance, which is the difference between the 
deviance of the full model (with all independent variables) and the deviance of the null model, to 
determine if the inclusion of the independent variables significantly improves the model fit. 
 
If the residual deviance is substantially smaller than the null deviance, it suggests that the independent 
variables have a significant impact on the outcome variable and contribute to the model fit. However, if 
the residual deviance is similar to the null deviance, it implies that the independent variables do not 
improve the model fit significantly and the null model may be adequate. 
 
Residual deviance is a statistical term used in logistic regression analysis to evaluate the goodness-of-fit 
of a logistic regression model that includes one or more independent variables. It measures the amount 
of unexplained variability or lack of fit of the model to the observed data, after taking into account the 
effects of the independent variables. 
 
The residual deviance is calculated as the difference between the deviance of the full logistic regression 
model (with all independent variables) and the deviance of the null model (with no independent 
variables). The deviance is a measure of the goodness-of-fit of the model and is calculated as minus 
twice the log-likelihood ratio of the model, compared to the saturated model (a model that perfectly fits 
the data). 
 
A smaller residual deviance value indicates a better fit of the model to the data, and a larger value 
indicates a poorer fit. The residual deviance can be used to test the significance of the independent 
variables in the model, by comparing the residual deviance to the null deviance. If the residual deviance 
is significantly smaller than the null deviance, it indicates that the model with the independent variables 
provides a better fit to the data than the null model. 
 
The residual deviance can also be used to calculate other goodness-of-fit measures, such as the Pearson 
chi-square statistic and the likelihood ratio test statistic. These measures can be used to assess the 
overall fit of the model, the adequacy of the model specification, and the potential for overfitting or 
underfitting the data. 
 
Some common model diagnostics for logistic regression include: 
 
Residual analysis: This involves examining the residuals or errors in the model to check if they are 
normally distributed, have constant variance, and are independent. Deviations from these assumptions 
may indicate problems with the model specification, such as omitted variables or nonlinear 
relationships. 
 
Influence analysis: This involves identifying influential observations or outliers that may have a 
disproportionate effect on the estimated coefficients or predicted probabilities. These observations can 



be identified using measures such as Cook's distance or leverage, and may require further investigation 
or data cleaning. 
 
Multicollinearity analysis: This involves examining the correlations between the independent variables in 
the model to check for multicollinearity or high correlation between predictors. High multicollinearity 
can make it difficult to interpret the individual effects of each variable and can lead to unstable or 
biased coefficient estimates. 
 
Goodness-of-fit tests: These tests check whether the model fits the data well, using measures such as 
the deviance, Pearson chi-square statistic, or Hosmer-Lemeshow test. A significant p-value indicates that 
the model does not fit the data well and may require further modifications. 
 
Model selection and comparison: This involves comparing different models with different sets of 
independent variables or specifications to determine the best fitting model. This can be done using 
techniques such as stepwise regression, AIC or BIC criteria, or cross-validation. 
 
Hypothesis tests on dimensionality reduction in logistic regression are used to determine the 
significance and usefulness of reducing the number of independent variables in the model. These tests 
can help to identify which variables are most important for predicting the outcome variable, and 
whether including additional variables improves the model fit. 
 
One common hypothesis test for dimensionality reduction in logistic regression is the likelihood ratio 
test. This test compares the fit of the full model, with all independent variables, to the fit of a reduced 
model, with some of the independent variables removed. The likelihood ratio test statistic is calculated 
as the difference in deviance between the full and reduced models, multiplied by -2, and follows a chi-
square distribution with degrees of freedom equal to the number of variables removed. 
 
If the p-value of the likelihood ratio test is less than the significance level (usually 0.05), it indicates that 
the full model is significantly better than the reduced model, and that removing some of the 
independent variables would result in a loss of predictive power. Conversely, if the p-value is greater 
than the significance level, it indicates that the reduced model is not significantly worse than the full 
model, and that reducing the number of variables may simplify the model without sacrificing too much 
predictive accuracy. 
 
Another hypothesis test for dimensionality reduction in logistic regression is the Wald test. This test 
compares the coefficients of the full model to the coefficients of a reduced model, where some of the 
variables are set to zero. The Wald test statistic is calculated as the ratio of the squared difference 
between the two coefficients, divided by the estimated variance of the coefficient, and follows a 
standard normal distribution under the null hypothesis of no difference. 
 
If the p-value of the Wald test is less than the significance level, it indicates that the coefficient for the 
removed variable is significantly different from zero, and that including this variable improves the model 
fit. Conversely, if the p-value is greater than the significance level, it indicates that the coefficient for the 
removed variable is not significantly different from zero, and that the variable can be safely removed 
from the model. 
 



Classification methods are a type of supervised machine learning algorithm that learn to assign objects 
or instances to predefined categories or classes based on their characteristics or features. Here are 
some common classification methods used in machine learning: 
 
Logistic Regression: This is a statistical technique that uses a logistic function to model the probability of 
a binary response variable, based on one or more independent variables. Logistic regression can handle 
both linear and nonlinear relationships between the predictors and the response, and can be extended 
to multiclass classification using techniques such as one-vs-rest or softmax regression. 
 
Decision Trees: This is a tree-based algorithm that recursively splits the data into smaller subsets based 
on the most informative features, in order to maximize the homogeneity or purity of the resulting 
subgroups. Decision trees can handle both categorical and numerical variables, and can be easily 
visualized and interpreted. 

 
Random Forests: This is an ensemble method that combines multiple decision trees trained on different 
subsets of the data and different subsets of the features, in order to reduce overfitting and improve 
accuracy. Random forests can handle high-dimensional data with correlated features, and can provide 
estimates of feature importance and variable interactions. 
 
Support Vector Machines (SVMs): This is a linear or nonlinear algorithm that learns a decision boundary 
or hyperplane that maximally separates the classes in the feature space. SVMs can handle both binary 
and multiclass classification, and can incorporate kernel functions to handle nonlinearity and high-
dimensional data. 

 



Naive Bayes: This is a probabilistic algorithm that uses Bayes' theorem to calculate the probability of 
each class given the observed features. Naive Bayes assumes that the features are conditionally 
independent given the class, and can handle high-dimensional and sparse data with fast training and 
prediction times. 

 
Neural Networks: This is a class of algorithms that simulate the structure and function of the human 
brain using interconnected nodes or neurons, and learn to approximate complex nonlinear functions 
through supervised or unsupervised training. Neural networks can handle various types of data and can 
achieve high accuracy on large and complex datasets, but can be computationally expensive and difficult 
to interpret. 

 
This list is not exhaustive. The choice of method depends on the specific problem, the type and amount 
of data available, and the desired trade-offs between accuracy, interpretability, and computational 
efficiency. 
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