
Lecture 9 
 
Logistic Regression and Classification models 
We’ve looked at cases with ANOVA where were modeled a numerical response variable with categorical 
or factored explanatory variables, and with regression so far, we’ve looked at modeling a numerical 
response variable with other numerical explanatory variables. We want to extend our general linear 
models now to a third case, where we model a categorical response variable with numerical explanatory 
variables. We have discussed some of the potential issues with categorical variables, ordinal variables 
and discrete variables in the context of being an explanatory variable. Some of these issues will also 
have to be considered in the case where they act as response variables: what do we do if the prediction 
falls between our discrete levels? How do we interpret that? What if the levels are unordered? What if 
the jump between levels is nonuniform? 
 
We will begin with the case of just two levels, and then we will briefly discuss strategies and potential 
pitfalls for situations where there are more than two levels. 
 
When there are just two possible categorical responses, we call this binary classification.  We use the 
term classification to indicate that our goal is to bin the data, classify it, into groups. Our model is binary 
because we have just two possible outcomes. You may recall a similar situation when we discussed 
Bernoulli variables (e.g. binomial distribution) that had only two outcomes, success and failure.  This is 
generally how we will think of our categorical variable in this instance as well. We will call 1 a success, 
and 0 a failure; a 1 is in the category of interest, and 0 is not in the category of interest. 
 
Suppose that we naively say, well, probability is continuous variable between 0 and 1, so let’s just make 
a linear regression function on the data and interpret it as a probability?  The graph below shows data 
from mtcars with am (American made) as the response variable and mpg as the explanatory variable, 
and a linear model plotted on the data using traditional simple linear regression. 
 

 



You can see from the graph that the line doesn’t fit the data particularly well, and we have potential 
problems at both ends: the regression model is predicting negative probabilities on the left end, and 
probabilities greater than 1 on the right end.  How would we interpret that? Could we just round the 
predictions? If less than 50%, then it predicts 0, and if greater than 50%, it predicts 1? Certainly, there 
might be some value here, but given the sensitivity of the model to random variation, there would be a 
lot of volatility in the predictions for values around the 50% mark depending on the specifics of the data 
collected and the specific coefficients in the model. 
 
There is some merit in this approach, but how can we improve it? 
 
One way would be to accommodate more predictive values than just between 0 and 1: to use more of 
the number line.  One way to achieve this is to use odds, rather than probabilities. 
 

Recall from last semester that odds for an event are 
𝑝(𝑥)

1−𝑝(𝑥)
: the probability of the event, divided by the 

probability the event will not happen.  When the probability of the event is very high, the complement is 
very small, so the odds are large. When the probability of an event is small, the complement is large and 
the odds are small (greater than zero, but small). If we used odds as the model instead of a probability, 
then we expand the range of possible values from 0 to infinity.  The odds = 1 is when the probability is 
evenly split (50% both for and against). The range of values for the top half of the range of probabilities 
is 1 to infinity, versus the bottom half of probabilities is only from 0 to 1. How do we make that better? 
 
Taking the logarithm of the odds function would extend the values from 1 to infinity into the set 0 to 
infinity (since ln(1)=0), and the values from 0 to 1 would be stretched into negative infinity to 0.  This 
evenly balances the range of outcomes for both halves and means that every predicted value has a 
meaning.  Then we can apply linear regression to the resulting values.   
 

ln (
𝑝(𝑥)

1 − 𝑝(𝑥)
) = 𝛽0 + 𝛽1𝑥 

 
We can rewrite this as  
 

𝑝(𝑥)

1 − 𝑝(𝑥)
= 𝑒𝛽0+𝛽1𝑥 

 
And if we then solve for 𝑝(𝑥) we then obtain what is referred to as the logit equation. 
 

𝑝(𝑥) =
𝑒𝛽0+𝛽1𝑥

1 + 𝑒𝛽0+𝛽1𝑥
 

 
The resulting curve is sometimes described as an S-curve, with a sharp increase around 50% probability 
and asymptotes at 0 and 1.  A logit curve model of our American made variable is shown in the graph 
below. 
 



 
 
This function eliminates the issues we had constructing a simple linear regression on this same data, and 
uses the glm() function in R to analyze the model for the same things we were able to analyze in our 
other linear models. For instance, we can conduct hypothesis tests on the full model, or on individua 
coefficients in the model. After transforming the variables, our model has similar assumptions to 
traditional regression, with errors on the coefficients approximately normal, and so forth. 
 
Let’s look at the output of the model analysis. 
 
Call: 
glm(formula = am ~ mpg, family = "binomial", data = mtcars) 
 
Deviance Residuals:  

    Min        1Q    Median        3Q       Max   

-1.5701   -0.7531   -0.4245    0.5866    2.0617   

 
Coefficients: 

             Estimate  Std. Error  z value  Pr(>|z|)    

(Intercept)   -6.6035      2.3514   -2.808   0.00498 ** 

mpg            0.3070      0.1148    2.673   0.00751 ** 

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 43.230  on 31  degrees of freedom 



Residual deviance: 29.675  on 30  degrees of freedom 
AIC: 33.675 
 
Number of Fisher Scoring iterations: 5 
 
Outputs of the model are values between 0 and 1. These are interpreted as probabilities.  The most 
common classification scheme is, therefore, that predictions from the logistic equation that are 0.50 or 
larger are interpreted as class 1, and values less than that are interpreted as class 0 (following a 
traditional rounding scheme).  In R, you can have the output delivered as the probabilities, or as the 
classifications.  However, there may be reasons to deviate from this standard scheme. It may be that 
given the classifications, that a false positive or a false negative is more dangerous than the other. In 
such a case, we can adjust the minimum value needed for the classification break point, either by 
adjusting it downward (to avoid false negatives) or adjusting it upward (to avoid false positives). This is 
fairly uncommon when the stakes are low but is somewhat more common in a medical context (for 
example), where a false positive might trigger further testing to resolve the issue. 
 

 
 
We can think of the false positives as a Type I error, and the false negatives as a Type II error (recall from 
hypothesis testing). 
 
Because the predictions, if they are incorrect, are off by an integer (once the classification scheme is 
applied), standard residuals are not the usual mechanism to test the quality of the model. Instead, a 
table called a confusion matrix is typically used.  In a confusion matrix, there are typically 4 cells (in a 2x2 
matrix), where one cell is the correctly classified 0s, one cell is the incorrectly classified 0s, one cell is the 
incorrectly classified 1s, and one cell is the correctly classified 1s.  Adding the two cells together for 
correct classifications, and divided by the total number of observations in the data set, provides a 



percentage that indicates the quality of the model. The higher the percentage of correct classifications 
the better. 
 
For example, suppose the following is the confusion matrix generated from our analysis. 
 

 
 
The total number of observations is 113 =  (30 + 12 + 8 + 56). The total number of correct 

classifications is 86 = (30 + 56). So the accuracy of our model is 76% (
86

113
).  This is pretty low, actually. 

We’d generally prefer it much higher. 
 
The error rate is 1 minus the accuracy.  Here, that is 1 − 0.76 =  24%. 
 
Ideally, we’d want to employ classification models (this or another type) when they perform as well as 
or better than human classifiers. 
 
There are two additional metrics we can calculate from the confusion matrix: recall and precision. 
 
Recall is the ratio of the true positive to all the observations that should have been positive (the false 

negatives).  In the example above that is 
56

8+56
 =

56

64
 =  87.5%. 

 
Precision is the ratio of the true positives to all those that the model predicted were positive. In the 

example above that is 
56

12+56
=

56

68
 =  82.3%. 

 
If models have high recall and low precision or vice versa, it can be a challenge to compare the models, 
so another measure is computed, called the F-score for this purpose. Let R be the recall value and P the 
precision. 
 

𝐹 =
2𝑅𝑃

𝑅 + 𝑃
 

For the table above, that would give us: 
 



𝐹 =
2(0.875)(0.823)

0.875 + 0.823
= 0.84848 … 

 
Since our recall and precision were both high, we got a value similar to them both, but this value is most 
useful when the recall and precision are most different. 
 
One potential problem with classification that can occur is masking: if the number of observations that 
are one of the classes greatly outnumbers the other class, the model may conclude that it is better to 
guess everything is in one class, rather than put anything in the second class. This may produce higher 
overall accuracy, even though everything in the smaller class is predicted incorrectly. Sometimes this can 
create extremely problematic results, particularly when the classes are related to race, or if the data 
used for the training has some other kind of bias built in.  The model will then replicate that bias.  It may 
be necessary to adjust the balance of the data to make the errors more fair, though this may sacrifice 
overall accuracy. Classification models are not value-free. 
 
It was noted that it’s possible to change the threshold for the classifier from the default of 0.50. How do 
we decide what it should be? For that, we can use an ROC curve.  The curve is plotted by setting the 
threshold at different levels and seeing how the classifier behaves in each case. The AUC, or area under 
the curve, is a measure of how good the classifier is overall. One can think of it as a measure of the 
separability of the two classes. The higher the AUC, the better the classifier is. Here is an example of an 
ROC plot (this one was built in Python). There is a sharp break at 0.5, which is not that uncommon. The 
curve allows you to see the trade-off for adjusting the threshold. You can catch more true positives or 
true negatives, but generally not both. 
 

 
 
A model similar to the one with the output in the table above (with approximately 70% accuracy), 
produces an ROC curve like this: 
 



 
 
TN is the true negatives (true 0), TP is the true positives (True 1), FN is the false negatives, and FP are the 
false positives.  If the classifier had higher accuracy, then the initial rise of the curve can be even more 
sharp.  If the classifier has a lower accuracy overall, say, 50% (chance), the slope will be a straight line 
with a slope of 1. 
 

 
 
If the accuracy is even lower, the concavity flips, but if it’s really that bad (less than chance), there is no 
point in using the model at all. 
 
Alternatively, you can compare precision and recall (values we calculated above). In this case, the “no 
skill” classifier (just chance) looks like a flat horizontal line. The curve shows the trade off between 
precision and recall, which, as we saw above, relate the ratio of true positives to actual positives or 
predicted positives. 
 



 
 
We’ve considered the case of binary outputs.  What if we don’t have a binary output? What can be done 
then? 
 
If the values are ordinal, one option to consider is predicting values with a traditional linear model, and 
having some mechanism (such as rounding) to deal with predictions between the discrete categories. 
This has some of the problems we discussed previously with the 0-1 classifier. 
 
Another alternative is to create multiple binary classifiers. Suppose you have three categories.  One 
model would treat class 1 as success and classes 2 and 3 as failure.  One model would treat class 2 as 
success and class 1 and 3 as failure.  If the model predicts failure for both class 1 and class 2, then it is 
designated as class 3.  One can do this with the entire dataset (this would require a plan to handle what 
if the prediction is both class 1 and class 2), or you could create the second model only from the failures 
of the first model. One potential problem, here, though, is that one might end up creating a masking 
effect, depending on how many classes there are, and their relative sizes. 
 
Logistic regression is not the only possible method of doing classifications. We will briefly discuss other 
methods later in the course when we review machine learning more broadly, but many other 
classification methods have a similar limitation of being primarily a binary classifier, so some schemes 
for those methods can also be applied to logistic regression. 
 
References: 
 

1. https://faculty.ksu.edu.sa/sites/default/files/probability_and_statistics_for_engineering_and_th
e_sciences.pdf 

2. https://www.geeksforgeeks.org/how-to-plot-a-logistic-regression-curve-in-r/ 
3. https://stats.oarc.ucla.edu/r/dae/logit-regression/ 
4. https://www.digitalocean.com/community/tutorials/confusion-matrix-in-r 
5. https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62 
6. https://www.kaggle.com/code/vithal2311/auc-roc-curve-confusion-matrix-explained-in-detail 

https://faculty.ksu.edu.sa/sites/default/files/probability_and_statistics_for_engineering_and_the_sciences.pdf
https://faculty.ksu.edu.sa/sites/default/files/probability_and_statistics_for_engineering_and_the_sciences.pdf
https://www.geeksforgeeks.org/how-to-plot-a-logistic-regression-curve-in-r/
https://stats.oarc.ucla.edu/r/dae/logit-regression/
https://www.digitalocean.com/community/tutorials/confusion-matrix-in-r
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62
https://www.kaggle.com/code/vithal2311/auc-roc-curve-confusion-matrix-explained-in-detail


7. https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-imbalanced-
classification/ 

8. https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-imbalanced-
classification/ 

 
 
 

https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-imbalanced-classification/
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-imbalanced-classification/
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-imbalanced-classification/
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-imbalanced-classification/

