
Lecture 1 
 
Introduction to the course 
In this second semester of Statistics with R course, we are going to focus mainly on Regression: relating 
two or more (usually numerical) variables in order to predict one of the variable values. We will look at 
several types of regression including simple linear regression, and also multiple regression, non-linear 
regression, logistic regression and the relationship to machine learning. We’ll also spend some time at 
the end of the semester discussing time series. To get started, we’ll review some of the calculus we 
discussed last semester that is relevant to our discussion of simple linear regression. In the coming 
weeks we’ll also briefly discuss some linear algebra basics so that we can discuss regression formulas in 
that context. 
 
Let’s get started! 
 
Review of joint probability distributions and covariance 
Last semester, we discussed joint probability distributions and they are newly relevant now as we move 
into a discussion of regression. So, let’s review what we discussed before proceeding further. 
 
Just as with the single random variable case, we must deal with both the discrete case and the 
continuous case with probability density functions. 
 
In the discrete case 

𝑃(𝑋 = 𝑥, 𝑌 = 𝑦) = 𝑝(𝑥, 𝑦) 
 
And which follows the usual rules that all values of 0 ≤ 𝑝(𝑥, 𝑦) ≤ 1, and 
 

∑ ∑ 𝑝(𝑥𝑖, 𝑦𝑗)

𝑚

𝑗=1

𝑛

𝑖=1

= 1 

 
Discrete probabilities can be expressed with piecewise function notation, but is often expressed in the 
form of a table (this becomes more difficult when there are more than two variables). 
 

 
 
In the continuous case, the pdf is a function of two (or more) variables.  In the two-variable case  
 

∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥
∞

−∞

=
∞

−∞

1 

 
And 0 ≤ 𝑓(𝑥, 𝑦) ≤ 1 for all allowable values of 𝑥 and 𝑦. 
To find the probability that (𝑋, 𝑌) is in some region, we integrate the function within those limits. 



 
Note: If the function has more than two variables, it will need one integral for each variable, but we will 
stick with the 2D case here. 
 
To break the probabilities down into their single variable cases, these are called marginal probabilities.  
In the discrete case 
 
𝑝𝑋(𝑥) = ∑ 𝑝(𝑥, 𝑦)𝑦  for each value of 𝑥 

𝑝𝑌(𝑦) = ∑ 𝑝(𝑥, 𝑦)𝑥  for each value of 𝑦 
 
In the continuous case 
 

𝑓𝑋(𝑥) = ∫ 𝑓(𝑥, 𝑦)𝑑𝑦
∞

−∞

 

 

𝑓𝑌(𝑦) = ∫ 𝑓(𝑥, 𝑦)𝑑𝑥
∞

−∞

 

 
Notice that the ideas are similar, we just replace the summations with integrals. 
 
We’ll do a complete integration example later, so let’s look at the marginal distributions for our discrete 
case. 
 
Our 𝑝𝑋(𝑥, 𝑦) becomes 

𝒙 𝟏𝟎𝟎 𝟐𝟓𝟎 

𝒑𝑿(𝒙) 0.5 0.5 

 
Our 𝑝𝑌(𝑥, 𝑦) becomes 

𝒚 𝟎 𝟏𝟎𝟎 𝟐𝟎𝟎 

𝒑𝒀(𝒚) 0.25 0.25 0.5 

 
If the probabilities are independent, then the product of the marginal probabilities is the same as the 
original probabilities.   
 

𝑝(𝑥, 𝑦) = 𝑝𝑋(𝑥)𝑝𝑌(𝑦) 
𝑓(𝑥, 𝑦) = 𝑓𝑋(𝑥)𝑓𝑌(𝑥) 

 
Our discrete case is not independent. 𝑃(𝑋 = 100) = 0.5, 𝑃(𝑌 = 0) = 0.25, but 𝑃(𝑋 = 100, 𝑌 = 0) =
0.20 ≠ (0.5)(0.25). 
 
We can talk about conditional probabilities in the joint case. 
 

𝑓𝑌|𝑋(𝑦|𝑥) =
𝑓(𝑥, 𝑦)

𝑓𝑋(𝑥)
 



Thus, the conditional probabilities are the two-variable distribution divided by the marginal distribution. 
We can generalize this to the 𝑥|𝑦 case, and the discrete case. 
 
The expected values are found similarly to the one variable case. 
 

𝐸(𝑋) = ∫ ∫ 𝑥𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥
∞

−∞

∞

−∞

 

 

𝐸(𝑌) = ∫ ∫ 𝑦𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥
∞

−∞

∞

−∞

 

 
In the discrete case 
 

𝐸(𝑋) = ∑ ∑ 𝑥𝑖𝑝(𝑥𝑖 , 𝑦𝑗)

𝑚

𝑗=1

𝑛

𝑖=1

 

 

𝐸(𝑌) = ∑ ∑ 𝑦𝑗𝑝(𝑥𝑖, 𝑦𝑗)

𝑚

𝑗=1

𝑛

𝑖=1

 

 
The variances are calculated similarly as before, by multiplying our pdf by (𝑥 − 𝜇𝑋)2 or (𝑦 − 𝜇𝑌)2 
respectively. 
 
Covariance 
One new idea we have with two variables is the covariance, which measures how two the variables are 
related to each other.  This is calculated as  
 

𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸[(𝑥 − 𝜇𝑋)(𝑦 − 𝜇𝑌)] 
 
As with variance, we have an alternative formulation that produces an equivalent result. 
 

𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸(𝑋𝑌) − 𝜇𝑋𝜇𝑌 
 
Covariance leads us to an idea that will be important when we tackle regression next semester: 
correlation coefficient. 
 

𝜌 = 𝐶𝑜𝑟𝑟(𝑋, 𝑌) =
𝐶𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
 

 
Correlation is a value that can only take on values in the interval [-1,1]. Values closer to 1 or -1 show a 
stronger relationship, while values closer to 0 show a weaker linear relationship. 
 
Linear transformations of X and Y do not change the correlation value which is useful since it is scale 
invariant. 
 
Let’s look at a complete continuous example. 
 



Consider the joint pdf 𝑓(𝑥, 𝑦) = 𝐾𝑥𝑦, 0 ≤ 𝑥 ≤ 1,0 ≤ 𝑦 ≤ 1. 
 

1. Find the value of K that makes this a valid probability distribution. 

∫ ∫ 𝐾𝑥𝑦𝑑𝑦𝑑𝑥
1

0

1

0

= ∫ 𝐾 (
1

2
𝑥𝑦2]

0

11

0

= ∫
𝐾

2
𝑥𝑑𝑥

1

0

=
𝐾

4
𝑥2|

0

1

=
1

4
𝐾 = 1 

 
So, we set 𝐾 = 4. 
 

2. Find the marginal pdf for 𝑥 and 𝑦 respectively. 

𝑓𝑋(𝑥) = ∫ 4𝑥𝑦𝑑𝑦
1

0

= 2𝑥𝑦2|0
1 = 2𝑥 

 

𝑓𝑌(𝑦) = ∫ 4𝑥𝑦𝑑𝑥
1

0

= 2𝑥2𝑦|0
1 = 2𝑦 

 
3. Are the variables independent?  

Yes, since 𝑓𝑋(𝑥)𝑓𝑌(𝑦) = (2𝑥)(2𝑦) = 4𝑥𝑦 = 𝑓(𝑥, 𝑦) 
 

4. What is the expected value of 𝑥 and 𝑦 respectively? 

𝐸(𝑋) = ∫ ∫ 𝑥(4𝑥𝑦)𝑑𝑦𝑑𝑥
1

0

1

0

= ∫ ∫ 4𝑥2𝑦𝑑𝑦𝑑𝑥
1

0

1

0

= ∫ 2𝑥2𝑑𝑥
1

0

=
2

3
𝑥3|

0

1

=
2

3
 

 
The math for 𝐸(𝑌) is exactly the same. 
 

5. Let’s calculate the variance. 
 

𝐸(𝑋2) = ∫ ∫ 𝑥2(4𝑥𝑦)𝑑𝑦𝑑𝑥
1

0

1

0

= ∫ ∫ 4𝑥3𝑦𝑑𝑦𝑑𝑥
1

0

1

0

= ∫ 2𝑥3𝑑𝑥
1

0

=
1

2
 

 

𝑉(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2 =
1

2
− (

2

3
)

2

=
1

2
−

4

9
=

1

18
 

 
The math for 𝑉(𝑌) is exactly the same. 
 

6. Let’s find the covariance. 
 

𝐸(𝑋𝑌) = ∫ ∫ 𝑥𝑦(4𝑥𝑦)𝑑𝑦𝑑𝑥
1

0

1

0

= ∫ ∫ 4𝑥2𝑦2𝑑𝑦𝑑𝑥
1

0

1

0

= ∫
4

3
𝑥2𝑑𝑥

1

0

=
4

9
 

 

𝐶𝑜𝑣(𝑋) = 𝐸(𝑋𝑌) − 𝜇𝑋𝜇𝑦 =
4

9
−

2

3
(

2

3
) = 0 

 
7. The correlation is therefore also 0. 

 
 
 



As with other statistical measures, the theoretical parameter value uses the Greek letter (here 𝜌), and 
the descriptive statistic that we measure from data uses the Latin equivalent (here 𝑟). The correlation 
describes the relationship between two variables. As we noted above, correlation values fall in the range 
of [−1,1]. A −1 correlation is a perfect negative linear relationship (the relationship has a negative slope 
and all the data falls on a straight line). A 1 correlation value is a perfect positive linear correlation (the 
relationship has a positive slope and all the data falls on a straight line).  A zero correlation occurs then 
the slope of the regression line is zero, which can happen when there is no relationship, or in certain 
types of nonlinear relationships. The best way to determine which situation applies is to look at a 
scatterplot. We’ll look at how those relate to correlation estimation in the next class.  Today, we are 
going to look at how to calculate the correlation from data.  For the Pearson correlation, it’s similar to 
the formula we’d use for a discrete distribution. 
 
The formula for correlation is often broken down into variances.  𝑆𝑥𝑦 is the covariance, and 𝑆𝑥𝑥 and 𝑆𝑦𝑦 

is the variance for 𝑥 and 𝑦 separately. So, we can write the correlation as 
 

𝑟 =
𝑆𝑥𝑦

√𝑆𝑥𝑥√𝑆𝑦𝑦

 

 
But we can write this out in a bit more detail so that we can compute it if need be: 
 

𝑟 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑁

𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑁
𝑖=1 √∑ (𝑦𝑖 − 𝑦̅)2𝑁

𝑖=1

=
∑ 𝑥𝑖𝑦𝑖

𝑁
𝑖=1 −

1
𝑛 (∑ 𝑥𝑖

𝑁
𝑖=1 )(∑ 𝑦𝑖

𝑁
𝑖=1 )

√∑ (𝑥𝑖 − 𝑥̅)2𝑁
𝑖=1 √∑ (𝑦𝑖 − 𝑦̅)2𝑁

𝑖=1

 

 
 
For even a small dataset, this is awful to calculate by hand, but fortunately, R can do it quite easily even 
for large data sets. This is the standard formula for the Pearson correlation coefficient.  This is the typical 
default method of computing correlation. 
 
We make several assumptions when we compute this correlation value. Among them is that there is a 
linear relationship between the variables, and that the errors relative to that line are normally 
distributed with constant variance. We generally use the t-distribution to model those errors and make 
inferences on the coefficient values of the regression line (which we’ll look at in greater detail in future 
lectures). 
 
We can conduct hypothesis tests on 𝜌 as we can with other inferences. Suppose that we want to test 
𝐻0: 𝜌 = 𝜌0, 𝐻𝑎: 𝜌 ≠ 0, we can construct a confidence interval to test this hypothesis using the following 
formula using the Fisher transformation. 
 

 



The variance here is dependent on the sample size, but not 𝜌 itself.  After performing the Fisher 
transformation, we build a confidence interval in this transformation, in the traditional way. 
 

 
 
We can then convert this back to the original correlation measure: 
 

 
 

Where 𝑐1 = 𝑣 −
𝑧𝛼/2

√𝑛−3
, and 𝑐2 = 𝑣 +

𝑧𝛼/2

√𝑛−3
, the endpoints of our interval in the Fisher transformation. 

These formulas can easily be obtained by replacing the endpoint values into the Fisher transformation 
formula and solving for 𝜌. 
 
We can also conduct a traditional hypothesis test with test statistic: 
 

 
 
In most cases, we are testing whether the correlation is 0 or not, which simplifies this calculation 
significantly since the second term in the numerator reduces to 0. 
 
The Devore text has more information on the bivariate normal distribution at the heart of our 
assumptions about correlation in the context of regression, although correlation is a more general idea. 
 
In the next lecture, we’ll look at some distribution-free measures of correlation and how correlation is 
reflected in scatterplots. 
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