IT-234 — datrabase
conceprts

UNIT 8 — USING SQL COMMANDS TO QUERY DATA IN MORE
THAN-ONE TABLE

overview

You have explored gathering
data from one table.

In this unit, you will be
combining data from two or
more tables to produce a
result sef.

This technique is how you
can get a lot of useful data
from the database, but it
requires knowledge of how
the tables are laid out.

overview

We can join tables (or
views) whenever we
need data from more
than one table in our
query results.

In SQL, you specify joins
by listing the tables or
views to be joined after
the FROM clause of the
SELECT statement.

overview

The SQL JOIN clause is
used with the FROM
table specifications to
combine records from
two or more tables in
a database.

A JOIN is a means for
combining fields from
two tables by using
values common to
each.

overview

Subqgueries are another means
for extracting data from
multiple tables in a SQL query.

0e®
T

A subquery refers to a query
(SELECT statement) that is
contained in, and thus is

subordinate to, another query.

Subqueries offer a very flexible
way of selecting data.

overview

results from mul’rlple —

SELECT queries into used if certain
a consolidated conditions are met.
result set. columns.

statement must also

be in the same
order.

overview

After completing this unit, you should
be able to:

> Use advanced SQL
statements to manage and
inferact with data from
more than one table.

SQL Joins

In a relational database, data is
distributed in multiple logical tables.

To get a complete meaningful set of
data, you need to query data from
these tables via joins.

SQL Server suppor’rs many kinds of joins
including inner join, Ief’rjom right join,
full outer join, and cross join.

Each join type specifies how SQL
Server uses data from one table to
select rows in another table.

Example tables from Northwind database:

= fh'"ms z _| orders v _| customers v
7 ShippertD TNT(11) oy ! OrderID INT(11) CustomerID VARCHAR(5)
* CompanyName VARCHAR(40) I # CustomerID VARCHAR(S) F + CompanyName VARCHAR(40)
/ Phone VARCHAR(24) | 2 EmployeeID INT(11) K > ContactName VARCHAR(30)
i__|< 2 OrderDate DATE ;-|__| 2 ContactTitle VARCHAR(30)

> RequiredDate DATE | ol > Address VARCHAR(60)

+ ShippedDate DATE + City VARCHAR(15)

+ ShipWia INT{11) F + Region VARCHAR(15)

> Freight DECIMAL(10,4) . > PostalCode VARCHAR(10)

> ShipName VARCHAR(40) 2 Country VARCHAR(15)

+ ShipAddress VARCHAR(60) # Phone VARCHAR(24)

 ShipCity VARCHAR(15) + Fax VARCHAR(24)

> ShipRegion VARCHAR(15)

> ShipPostalCode VARCHAR(10)

> ShipCountry VARCHAR(15)

SQL Joins

SQL INNER JOIN

The INNER JOIN keyword

selects records that have
matching values in both

tables.

Syntax:

SELECT column_name(s)
FROM tablel
IMNER JOIN table2

ON tablel.column_name = tablel.column_name;

INMER JOIN

We can create the following SQL
statement (that contains an INNER
JOIN), that selects records that have
matching values in both tables:

SQL INNER

JOIN

SELECT Orders.OrderID, Customers.CompanyName
FROM Orders
INNER JOIN Customers ON Orders.CustomerID = Customers.CustomerlID;

The following SQL statement selects all
orders with customer and shipper

SELECT Orders.OrderID,
Customers.CompanyName AS "Company",
Shippers.CompanyName AS "Shipper"

FROM ((Orders

INNER JOIN Customers ON Orders.CustomerID = Customers.CustomerID)
INNER JOIN Shippers ON Orders.ShipVia

OrderlD
10248
10245
10250
10251
10252
10253
10254
10255
10256

W] o e L py —

Company

Vins et alcools Chevalier
Toms Spezialtaten
Hanari Cames
Victuailles en stock
Suprémes délices
Hanari Cames
Chop-suey Chinese
Richter Supemarit

Wellington Importadora

= Shippers.ShipperlID);

Shipper

Federal Shipping
Speedy Express
United Package
Speedy Express
United Package
United Package
United Package
Federal Shipping
United Package

SQL INNER JOIN - Three tables

SQL LEFT OUTER
JOIN

The LEFT JOIN keyword
returns all records from the
left table (tablel), and the
matching records from the
right table (table?2).

The result is O records from
the right side, if there is no
match.

SELECT column_name(s)
FROM tablel
LEFT JOIN table2

OM tablel.column name = tablel.column name;

LEFT JOIN

The following SQL statement will select all

customers, and any orders they might
SELECT Customers.CompanyName, Orders.OrderID

FROM Customers

SQL LEFT

LEFT JOIN Orders ON Customers.CustomerID = Orders.CustomerID
ORDER BY Orders.OrderID;

OUTER

CompanyMName OrderlD
1 FISSA Fabrica Inter. Salchichas 5.A. MULL
2 Paris spécialités MULL
3 Vins et alcools Chevalier 10248
4 Toms Spezialtaten 10245 J O | N
5 Hanari Cames 10250
6 Victuailles en stock 10251
7 Suprémes délices 10252
8 Hanari Cames 10253

Note: The LEFT JOIN keyword returns all records from the left table
(Customers), even if there are no matches in the right table (Orders).

SQL right OUTER
JOIN

The RIGHT JOIN keyword
returns all records from the
right table (table2), and the
matching records from the
left table (tablel).

The result is O records from
the left side, if there is no
match.

SELECT column _name(s)
FROM tablel
RIGHT J0IN tablel2

ON tablel.column_name = tablel.column_name;

RIGHT JOIN

The following SQL statement will select all

customers, and any orders they might

SELECT Customers.CompanyName, Orders.OrderID
FROM Orders

RIGHT JOIN Customers ON Customers.CustomerID = Orders.CustomerID

ORDER BY Orders.OrderID;

CompanyMame

FISSA Fabrica Inter. Salchichas S.A.
Paris spécialités

Vins et alcools Chevalier

Toms Spezialtaten

Hanari Cames

Victuailles en stock

Suprémes délices

G0~ @ N b G P —

Hanari Cames

Note: The RIGHT JOIN keyword returns all records from the right table
(Customers), even if there are no matches in the left table (Orders).

SQL right OUTER JOIN

OrderlD
NULL
NULL
10248
10249
10250
10251
10252
10253

SQL full OUTER
JOIN

The FULL OUTER JOIN
keyword returns all records
when there is a match in left
(tablel) orright (table2)
table records.

SELECT column_name(s)

FROM tablel

FULL OUTER JOIN table2

ON tablel.column_name = tablel.column_name
WHERE condition;

FULL OUTER JOIN

The following SQL statement selects all
customers and all orders:

SELECT Customers.CompanyName, Orders.OrderID
FROM Customers

FULL OUTER JOIN Orders ON Customers.CustomerID=Orders.CustomerID

ORDER BY Orders.OrderID;

CompanyMame

FISSA Fabrica Inter. Salchichas S.A.
Paris spécialités

Vins et alcools Chevalier

Toms Spezialitaten

Hanari Cames

Victuailles en stock

N e W R —

Suprémes délices

o

Hanari Cames

Note: The FULL OUTER JOIN keyword returns all matching records from both tables whether the other
table matches or not. So, if there are rows in "Customers" that do not have matches in "Orders", or if
there are rows in "Orders" that do not have matches in "Customers", those rows will be listed as well.

SQL full OUTER JOIN

OrderlD
NULL
NULL
10248
10243
10250
10251
10252
10253

A self join is a regular join, but the table
is joined with itself.

Syntax:

SQL Self

SELECT ceolumn _name(s)

FROM tablel T1, tablel T2
WHERE condition;

Join

T1 and T2 are different table aliases for
the same table.

The following SQL statement matches

customers that are from the same city:
SELECT A.CompanyName AS CustomerNamel,

B.CompanyName AS CustomerName2,
A.City
FROM Customers A, Customers B

WHERE A.CustomerID <> B.CustomerID
AND A.City = B.City
ORDER BY A.City;

CustomerName1 CustomerName2 City
1 Cactus Comidas para llevar Océano Atléntico Lida Buenos Aires
2 Cactus Comidas para llevar Rancho grande Buenos Aires
3 Rancho grande Cactus Comidas para llevar Buenos Aires
4 Rancho grande Océano Atléntico Ltda Buenos Aires
5 Qcéano Atlantico Ltda. Cactus Comidas para llevar Buenos Aires
[Océano Atlantico Lida. Rancho grande Buenos Aires
7 Frincesa lsabel Vinhos Furia Bacalhau & Frutos do Mar Lisboa
8 Furia Bacalhau e Frutos do Mar Princesa Isabel Vinhos Lisboa

SQL Self Join

SQL UNION

Operator

The UNION operator is used to
combine the result set of two or
more SELECT statements.

> Every SELECT statement
within UNION must have the
same number of columns

> The columns must also
have similar data types

> The columns in every
SELECT statement must also
be in the same order

SQL

UNION
Operator

UNION Syntax:

SELECT column_name(s) FROM tablel
UNION
SELECT column name(s) FROM table2;

The UNION operator selects only
distinct values by default.

To allow duplicate values, use UNION
ALL:

SELECT column name(s) FROM tablel
UNTOM ALL
SELECT column_name(s) FROM table2;

The following SQL statement returns the
cities (only distinct values) from both

the "Customers' and the "Suppliers"

T(]tﬂe;: SELECT City FROM Customers
UNION

SELECT City FROM Suppliers
ORDER BY City;

1
2
3
4 Ann Arb
5
6
7
]

SQL UNION Operator

The following SQL statement returns
the German cities (only distinct
values) from both the "Customers”
and the "Suppliers" table:

SQL

SELECT City, Country FROM Customers
WHERE Country='Germany"’
UNION

UNION
Operator

SELECT City, Country FROM Suppliers
WHERE Country='Germany"’
ORDER BY City;

City Country
1 Aachen Germany
2 Berin Germany
3 Brandenburg Germany
4 Cunewal Ide Germany
5 Cuxhaven Gemany
& Frankfurt Gemany
7 Frankfurt a.M. Gemmany

The following SQL statement lists all
customers and suppliers:

SELECT 'Customer® AS Type, ContactName, City, Country

FROM Customers
UNION

SELECT 'Supplier’, ContactName, City, Country
FROM Suppliers
ORDER BY ContactName;

Type Contact Mame City
1 Customer Alejandra Camino Madrid
2 Customer Alexander Feuer Leipzig
3 Customer Ana Trjillo México D.F.
4 Customer Anabela Domingues Sao Paulo
5 Customer André Fonseca Campinas
6 Customer Ann Devon London
7 Supplier Anne Heikdonen Lappeenranta
] Customer Annette Roulet Toulouse
] Supplier Antonio del Valle Saavedra Owiedo
10 Customer Antonio Mareno México D.F.
11 Customer Ara Cruz Sao Paulo
12 Customer At Braunschweiger Lander
13 Supplier Beate Vileid Sandvika

Country
Spain
Germany
Mexico
Brazil
Brazil
UK
Finland
France
Spain
Mexico
Brazil
USA

Norway

SQL

UNION
Operator

The following SQL statement returns the
cities (duplicate values also) from
both the "Customers” and the
"Suppliers” table:

SELECT City FROM Customers
UNION ALL
SELECT City FROM Suppliers

SQL UNION Operator

SQL

subquery

A subquery is a query nested
inside another statement
such as SELECT, INSERT,
UPDATE, or DELETE.

> In place of an expression
> With IN or NOT IN
> With ANY or ALL

With EXISTS or NOT EXISTS

In UPDATE, DELETE, or INSERT
statement

In the FROM clause

Example tables:

SQL subquery

sales.customers

sales.orders = -

o :_:ustomer id
: first_name

customer id E last_name
order_status phone
order_date Bo——oH email
reqmred_date street
5h|ppe_d_date city
store_.ld state
staff_id zip_code

SELECT

The fO”OWing STOTemenT order_id,
shows how to use a

customer_id

subqguery in the

WHERE clause of a N SQ |_

SELECT statement to NOCEONED

find the sales orders SU bq uery
of the customers who sales. custoners

locate in New York: T ey = e vk

)

ORDER BY

order_date DESC;

order_id order_date customer_id
. 20180409 16
5 20180116 1016
SQL sub query 0 20170723 16
72 2016-11-24 178
20161019 927
20160803 16
20160617 411
20160418 354
20160314 327

Here is the result:

In the example, the following

statement is a subquery: = 452

Note that you must always enclose customer_id
the SELECT query of a subqguery in FROM
parentheses ().

sales.customers
WHERE

city = "New York'

SQL
subqguery

A subquery is
also known as
an inner query
or inner select
while the
statement
containing the
subqguery is
called an outer
select or outer

query:

SELECT
order_id,
order_date,
customer_id

FROM
sales.orders
WHERE
customer id IN (
SELECT
customer_id
FROM
sales.customers
WHERE
city = "New York'
ORDER BY

order date DESC;

outer query

In the example query, the subquery
executes first fo get a list of customer
identification numbers of the customers
who locate in New York.

. . customer_id
SELECT 16
customer id 17
FROM 327
sales.customers A1
354
WHERE 537
city = "New York' 1016

SQL subqguery

SQL

subqguery

SQL Server then substitutes customer
identification numbers returned by the
subqguery in the IN operator and
executes the outer query to get the
final result set.

SELECT
order 1id,
order date,

customer id

customer id IN (16, 178, 327,
ORDER BY order date DESC;

As you can see, by using the subquery, you can combine two
steps together.

The subqguery removes the need for selecting the customer
identification numbers and plugging them into the outer query.

Moreover, the query itself automatically adjusts whenever the
customer data changes.

SQL subqguery

SELECT

product_name,

A subquery can be
nested within another Listprice >

product_name
Surly Karate Monkey 27 5+ Frameset - 2017 24599.99

S U b q U e ry W (1) Trek Fuel EX 7 25-2018 2459999
' FROM Surly Krampus Frameset - 2018 245959

production.products Surly Troll Frameset - 2018 245955
Trek Domane SL 5 Disc Waomen's - 2018 245959

S Q L S e rver S U p p O r-I-S U p NHEREr‘and_id Trek 1120- 2018 245999

list_price
SELECT !

. o000 (. o000 00 Trek Domane SL 5 Disc - 2018 2459.99

-I- 3 2 I | .I: .I- @ SELECT Heller Bloodhound Trail - 2018 2595.00
O e V e S O n e S I n g . brand_id Heller Shagamaw GX1- 2018 2599.00
Trek Domane 5 5 Disc - 20017 2599.99

st e s Electra Townie Go! 8i Ladies’ - 2018 2599.99

Electra Townie Go! 8i - 2017/2018 2599.99

o {ERE Hlectra Townie Go! 8 - 2017/2018 2599.99

LUCLLILEL SRS LI Hlactra Townie Go! 8 Ladies' - 2018 2599.99

brand_name = 'Trek’ Electra Townie Go! & - 2017/2018 2599.99

00060000000 Trek Domane 5 & - 2017 2699.99

Trek Lift+ - 2018 2799.99

Trek Conduit= - 2018 2799.99

ODERREY Trek Neka= - 2018 2799.99

list price;

QL Nested subqguery

First, SQL Server executes the following
subquery to get a list of brand
identification numbers of the Strider
and Trek brands:

SELECT

brand id
FROM

production.brands
WHERE

brand name = 'Strider’

OR brand name = 'Trek’;

SQL nested subqguery

SQL nested subqguery

» Second, SQL Server calculates the average price
list of all products that belong to those brands.

SELECT
AVG (list price)
FROM

production.products

WHERE
brand id IN (5,9)

» Third, SQL Server finds the products whose list price
is greater than the average list price of all products
with the Strider or Trek brand.

Suppose that you want to find the
average of the sum of orders of all
sales staff.

To do this, you can first find the
number of orders by staffs:

SELECT
staff_id,
COUNT (order_id) order_coun

FROM
sales.orders

GROUP BY
staff_id;

SQL
subqguery

— virtuadl
table

Then, you can apply the AVG() function to this
result set.

Since a query returns a result set that looks like
a virtual table, you can place the whole

query in the FROM clause of another query
like this:

SELECT

AVG(order_count) average orde

FROM
(

SELECT

staff_id, average_order_count_by_staff

COUNT(order_i order_coun 265

FROM
sales.orders

GROUP BY
staff_id

) t;

SQL subqguery — virtual table

SQL
subqguery

— virtuadl
table

The query that you place in the FROM clause

must have a table alias.

To come up with the final result, SQL Server

carries the following steps:

' Use the result of the
Execute the subquery in
fhe FROM clause. subquery and execute the

outer query.

SQL

correlated
subqguery

A correlated subquery is a
subquery that uses the values
of the outer query.

In other words, it depends on
the outer query for its values.

Because of this dependency,
a correlated subquery
cannot be executed
independently as a simple
subquery.

SQL correlated

subqguery .
production.products
M ’ :
cordE=c * product_id
subquery is
executed product name
repeatedly, once —
f h '
e?/roelgg’regjoévy the I:I k= ﬂd_ld
outer query. -
The correlated Eatﬁ‘gﬂw_ld
subquery is also m DdE‘l YEE r
known as a —
-I-' . .

BT list_price
Consider the

following products
table:

The following example finds the products
whose list price is equal to the highest
list price of the products within the
same category:

SELECT

product_name,

list_price,

category id
product_name list_price category_id
FROM { Hecira Straight 8 3 (20inch) - Boy's - 2017 | 489.99

;
Biecira Townie 3 £ (20nchy - Boys - 2017 48999 1
. . Trek Superly 24 - 2017/2013 48998 1
production.products pl Biectra Tonnie Go! 8 - 2017/2018 %5 2
ectr ute Gol - 2018 29959 3
hIH E R E Blectra wute Go! Ladies' - 2018 2999.99 3
Trek B 399999 4
list price IN (Trek Powarly 7 FS - 2018 499999 5
Trek Powerlly 8 FS Plus - 2017 499999 5
- Trek Super Commuters 85 - 2018 4% 5

SELECT Trek Fuel EX 9.8 27.5 Plus - 2017 529999 6 S U b U e r
Trek Remedy 9.8- 2017 529999 6
MAX (Dz.list_nl‘ice) Trek Domane SLR 9 Disc - 2018 1199999 7 y

FROM
production.products p2
WHERE

p2.category id = pl.category_ id
GROUP BY

p2.category_id
)
ORDER BY

category_id,

product_name;

In the example, for
each product
evaluated by the
outer query, the
subquery finds the
highest price of all
products in ifs
category.

This process
continues for the
next product and so
on.

If the price of the
current product is
equal to the highest
price of all products
in its category, the
product is included
in the result set.

As you can see, the
correlated subquery
is executed once for
each product
evaluated by the
outer query.

SQL

correlated
subqguery

	Slide 1: IT-234 – database concepts
	Slide 2: overview
	Slide 3: overview
	Slide 4: overview
	Slide 5: overview
	Slide 6: overview
	Slide 7: overview
	Slide 8: SQL Joins
	Slide 9: SQL Joins
	Slide 10: SQL INNER JOIN
	Slide 11: SQL INNER JOIN
	Slide 12: SQL INNER JOIN – Three tables
	Slide 13: SQL LEFT OUTER JOIN
	Slide 14: SQL LEFT OUTER JOIN
	Slide 15: SQL right OUTER JOIN
	Slide 16: SQL right OUTER JOIN
	Slide 17: SQL full OUTER JOIN
	Slide 18: SQL full OUTER JOIN
	Slide 19: SQL Self Join
	Slide 20: SQL Self Join
	Slide 21: SQL UNION Operator
	Slide 22: SQL UNION Operator
	Slide 23: SQL UNION Operator
	Slide 24: SQL UNION Operator
	Slide 25: SQL UNION Operator
	Slide 26: SQL UNION Operator
	Slide 27: SQL subquery
	Slide 28: SQL subquery
	Slide 29: SQL subquery
	Slide 30: SQL subquery
	Slide 31: SQL subquery
	Slide 32: SQL subquery
	Slide 33: SQL subquery
	Slide 34: SQL subquery
	Slide 35: SQL Nested subquery
	Slide 36: SQL nested subquery
	Slide 37: SQL nested subquery
	Slide 38: SQL subquery – virtual table
	Slide 39: SQL subquery – virtual table
	Slide 40: SQL subquery – virtual table
	Slide 41: SQL correlated subquery
	Slide 42: SQL correlated subquery
	Slide 43: SQL correlated subquery
	Slide 44: SQL correlated subquery

