IT-234 — datrabase
conceprts

UNIT 2 — THE LOGICAL DATABASE MODEL AND DATABASE
NORMALIZATION

overview

Logical database design typically
entails synthesizing individual
data elements info normalized
tables after careful analysis of
data element interdependencies
defined by business requirements
analysis.

The logical data model
specifically adds attributes,
primary keys, and foreign keys.

overview

The tables will be able to store

data about the organization’s , :
entities in a non-redundant e o(rje ?ddlng nlnobrefc?rlke]’ron S
manner, and foreign keys will ys(’?ilIJIrnoOdg rg(r)wdeeﬁcé oneori >
be placed in the tables so that do’ro%ose svstem Y
all the relationships among the 4 ’
entities will be supported.

overview

The logical data model will be
describing the data
requirements from a business
point of view.

The goal of logical database
design is to create well-
structured relations that
properly reflect the
company's business
environment.

After completing this unit, you should
be able to:

> |ldentify attributes for entities
in the database.

> Define data type and
nullability.

overview > |ldentify all primary keys for
entities in the database.

> Recognize any foreign keys
required for entifies in the
database.

> Create an entity relationship
diagram (ERD) that reflects
the logical data model.

Database maintenance Enterprise modeling

* Ensure that evolving information * Analyze current data processing
requirements are met \ . Analyze the general business func-
* Add, delete, or changes char- P'am;; tions and their database needs

acteristics of the structure .

of a database in order o -96) x ‘ cn%iﬂgslpt::ﬁ:nmgfmg

- Lneej changrng‘t. conceptual data model.

_ usmetss fOHTEAIE » Compare preliminary con-
correct errors ceptual data model with

enterprise data model

* Develop detailed con-
ceptual data model

[ﬂ]ﬂﬂ

database when it is
cantaminated

my
b
b
g
a
jui]
=
o
3
[}
[w]
=
@
£
L
a\p’i\d I
<
(s

,‘:b- “ Logical database design
/ ?é\ = Transform conceptual data
model into relations

= Normalization

Database implementation
» Create and test the database
» Complete database documentation

and training materials Physical database design
» |nstall database and convert data » Specify the organization of physical
from prior systems records, the choice of file organizations,

and the use of indexes

Database lite cycle

Components
of THE

relational
model

= DOta structure

e Tables (relations), rows,
columns

 Powerful SQL operations for
retrieving and modifying data

mm Datfa integrity

 Mechanisms for implementing
business rules that maintain
integrity of manipulated data

RelationS

A relation is a named, two-dimensional
table of data.

A table consists of rows (records) and
columns (afttribute or field).

Requirements for a table to qualify as
a relation:

|t must have a unigue name.

*Every attribute value must be atomic (not
multivalued, not composite).

*Every row must be unique (can’t have two rows
with exactly the same values for all their fields).

* Aftributes (columns) in tables must have unique
names.

NOTE: All relations are in 1t Normal
form.

RELATIONS

Relations (tables) correspond with entity types and with
many-to-many relationship types.

Rows correspond with entity instances and with many-
to-many relationship instances.

NOTE: The word relation (in relational database) is NOT
the same as the word relationship (in E-R model).

Key Fields

» Keys are special fields that serve two main purposes:

> Primary keys are unique identifiers of the relation.
Examples include employee numbers, social security
numbers, etc. This guarantees that all rows are
unique.

> Foreign keys are identifiers that enable a dependent
relation (on the many side of a relationship) to refer
to its parent relation (on the one side of the
relationship).

» Keys can be simple (a single field) or composite (more
than one field).

» Keys usually are used as indexes to speed up the
response to user queries

CustomerlD %Dmerr\lame CustomerAddress | CustomerCity” [CustomerState *| CustomerPostalCode
<—

e — Primary Key

Foreign Key

(implements 1:N relationship
between customer and order)

/
OrderlD Drderﬂat{ CustomerlD

ORDER LINE

— —_— Combined, these are a composite primary key
C’derm ProductiD mﬂﬂuafﬂ“‘f’ (uniquely identifies the order line)...individually
___— they are foreign keys (implement M:N relationship

\ between order and product)
PRODUCT

ProductlD Prc:duct[]escripti@n|F’r@duc’[Finish ProductStandardPrice | ProductLinelD

* Not in Figure 2-22 for simplicity.

Schema for four relations (Pine Valley Furniture
Company)

CustomerlD |CustomerName| CustomerAddress | CustomerCity| CustomerState | CustomerPostalCode

A

ORDER
OrderlD | OrderDate | CustomerlD

T ORDER LINE

OrderlD | ProductlD | OrderedQuantity
|

{ PRODUCT
ProductlD |ProductDescription |ProductFinish| ProductStandardPrice | ProductLinelD

Referential integrity constraints (Pine Valley Furniture)

CREATE TABLE Customer_T

(CustomerlD NUMBER(11,0) NOT NULL,
CustomerName VARCHAR2(25) NOT NULL,
CustomerAddress VARCHAR2(30),
CustomerCity VARCHAR2(20),
CustomerState CHAR(2),
CustomerPostalCode VARCHAR2(9),
CONSTRAINT Customer_PK PRIMARY KEY (CustomerlD));
REATE TABLE Order T Referential integrity
(OrderlD NUMBER(11,0) NOT NULL, .
OrderDate DATE DEFAULT SYSDATE, constraints are
| CustomerlD NUMBER(11,0), | Im I m nt Wlth
CONSTRAINT Order_PK PRIMARY KEY (OrderID), ple . ented
CONSTRAINT Order_FK FOREIGN KEY {CustomerlD) REFERENCES Customer_T {CustomerID)); fo reign key to
CREATE TABLE Product T primary key
(ProductlD NUMBER(11,0) NOT NULL,
ProductDescription VARCHAR2(50), refe rences
ProductFinish VARCHAR2(20),
ProductStandardPrice DECIMAL(8,2),
ProductLinelD NUMBER(11,0),

CONSTRAINT Product_PK PRIMARY KEY (FroductlD));

CREATE TABLE OrderLine_T

(OrderlD NUMBER(11,0) NOT NULL,
ProductID NUMBER(11,0) NOT NULL,
OrderedQuantity NUMBER(11,0),

CONSTRAINT OrderLine_PK PRIMARY KEY (OrderlD, ProductID),
CONSTRAINT OrderLine_FK1 FOREIGN KEY (OrderlD) REFERENCES Order_T (OrderlD),
CONSTRAINT OrderLine_FK2 FOREIGN KEY (ProductlD) REFERENCES Product_T (ProductID));

SQL table definitions

Transforming ER Diagrams into
Relations

Mapping Regular Entities to Relations

~

Simple attributes: E-R attributes map directly onto
the relation

Composite attributes: Use only their simple,
component attributes

Multivalued Attribute: Becomes a separate relation
with a foreign key taken from the superior entity

CUSTOMER
Customer ID
Customer Name
Customer Address
Customer Postal Code

CUSTOMER

CustomerlD CustomerName CustomerAddress CustomerPostalCode

Mapping a Regular Enftity

CUSTOMER CUSTOMER
entity type Customer ID
with] Customer Name
Compt?s'te Customer Address
U (CustomerStreet, CustomerCity, CustomerState)
Customer Postal Code
CUSTOMER relation with address detail

CUSTOMER

CustomerlD | CustomerName | CustomerStreet | CustomerCity | CustomerState | CustomerPostalCode

Mapping a Composite Attribute

EMPLOYEE
Employee ID
Employee Mame
Employee Address
{Skill}

Multivalued attribute becomes a separate relation with foreign key

-

EmployeelD EmployeeName EmployeeAddress

(b) EMPLOYEE

EMPLOYEE SKILL

EmployeelD Skill

One-to—many relationship between original entity and new relation

Mapping an Entity with a Multivalued Attribute

Transforming ER
Diagrams into
Relations (cont.)

Mapping Binary Relationships

7~

One-to-Many-Primary key on the
one side becomes a foreign key
on the many side

Many-to-Many-Create a new
relation with the primary keys of
the two entities as its primary key

One-to-One-Primary key on
nmandatory side becomes a
foreign key on optional side

CUSTOMER
Customer ID
Customer Name
Customer Address

Customer Postal Code | NOte the mandatory one

Submits

-

ORDER

ORDER ID
Order Date

Mapping the relationship

CUSTOMER

CustomerlD CustomerName

CustomerAddress CustomerPostalCode

A

ORDER

OrderlD OrderDate

CustomerlD

Foreign key

Again, no null value in the
foreign key...this is because
of the mandatory minimum
cardinality.

Example of Mapping a 1:M Relationship

RELATIONSHIP BETWEEN CUSTOMERS AND ORDERS

EMPLOYEE COURSE
Employee ID Course ID
Employee Name — - Course Title

_ Completes
Employee Birth Date

The Completes relationship will need to become a separate relation.

Example of Mapping an M:N
Relationship

Foreign i{e'y'

EMPLOYEE

EmployeelD

EmployeeName

EmployeeBirthDate

Composite primary key
v

” CERTIFICATE N

EmployeelD

CourselD

DateCompleted

new

COURSE, "~

Foreign key

CourselD

CourseTitle

intersection
relation

Example of Mapping an M:N
Relationship (cont.)

Date Assigned

NURSE

Nurse |ID

Nurse Name
Nurse Birth Date

CARE CENTER

Center ID
Center Location

In Charge

Often in 1:1 relationships, one direction is optional

Example of Mapping a Binary 1:1 Relationship

Foreign key goes in the relation on the optional side,
matching the primary key on the mandatory side

Example of Mapping a Binary 1:1 Relationship (cont.)

Transforming
ER Diagrams

INto
Relations
(cont.)

Mapping Associative Entities

>

>

|ldentifier Not Assigned

>

Default primary key for the
association relation is
composed of the primary
keys of the two entities (as
in M:N relationship)

ldentifier Assigned

>

It is natural and familiar to
end-users

Default identifier may not
be unique

ORDER ORDER LINE PRODUCT
Order ID Product ID
Order Date Ordered Quantity —~ Product Description
= Product Finish
Product Standard Price
Product Line ID

Mote: Product Line 1D is included here
because it is a foreign key into the
PRODUCT LINE entity, not because
it would normally be included as an
attribute of PRODUCT

Example of Mapping an Associative Entity

ORDER

P{ OrderlD

OrderDate

ORDER LINE

| OrderD

ProductiD OrderedCuantity

PRODUCTy

ProductlD

ProductDescription

ProductFinish

ProductStandardPrice

ProductLinelD

Composite primary key formed from the two foreign keys

Example of Mapping an
Associative Entity (cont.)

CUSTOMER SHIPMENT | VENDOR

Customer ID Shipment ID - Vendor ID
Customer Name Shipment Date - Vendor Address
Shipment Amount

Example of Mapping an Associative Entity with
an Identfifier

CUSTOMER

Three Resulting Relations

CustomerlD

CustomerMame

A

SHIPMENT

Primary key differs from foreign

keys

ShipmentlD

CustomerlD

ShipmentDate

VENDOR {

VendorlD

VendorAddress

Example of Mapping an Associative Entity with
an |denfifier (cont.)

ShipmentAmount

Transforming ER Diagrams into
Relations (cont.)

Mapping Unary Relationships

» One-to-Many - Recursive foreign key in the same
relation

» Many-to-Many - Two relations:
> One for the entity type

» One for an associative relation in which the
primary key has two attributes, both taken from
the primary key of the entity

EMPLOYEE
Employee ID
Employee Name
Employee Date of Birth

Is Managed By

EMPLOYEE s
entity with unary
relationship Manages
EMPLOYE EMPLOYEE
E relation
with EmployeelD | EmployeeName EmployeeDateOfBirth ManageriD
recursive 7y
foreign key

Mapping a Unary 1:N Relationship

| Contains
ITEM . .
ltem No Bill-of-materials
flemDesciiption | [Quantiy relationships (unary M:N)
Item Unit Cost
ITEM
P » ltemNo ltemDescription ltemUnitCost
ITEM and -
COMPONEN |
-| ltemMNo ComponentNo Quantity

Mapping a unary M:N relationship

Mapping Ternary (and n-ary) Relationships

-~

One relation for each entity and one
for the associative entity

Associative entity has foreign keys to
each entity in the relationship

Transforming
ER Diagrams

into Relations
(cont.)

PHYSICIAN
Physician |ID
Physician Name

PATIENT

Patient ID Treatment Code

Treatment Description

PATIENT TREATMENT ‘ TREATMENT

PTreatment Time
PTreatment Results

Patient Name — { PTreatment Date

Mapping a Ternary Relationship

Mapping the ternary relationship PATIENT TREATMENT

PATIENT PHYSICIAN TREATMENT
" PatientlD PatientName PhysicianlD PhysicianName TreatmentCode TreatmentDescription
Mapping a f
Temgry | PATIENT TREATMENT / —
: * PatientlD PhysicianID TreatmentCode PTreatmentDate PTreatmentTime PTreatmentResults
Relationship (cont.)
Remember Thjs is why But this makes It would be
that the {reatment date a very better to create
primary key and time are cumbersome a surrogate key
MUST be jpcluded in the key... like
unique. composite Treatment#.

primary Kkey.

Mapping a Ternary Relationship (cont.)

Mapping the ternary relationship PATIENT TREATMENT

PATIENT PHYSICIAN TREATMENT
PatientlD PatientName PhysicianlD PhysicianName TreatmentCode TreatmentDescription
'Y A &
PATIENT TREATMENT
PatientTreatment PatientlD PhysicianlD TreatmentCode PTreatmentDate PTreatmentTime PlreatmentResults

NEW PRIMARY KEY

Data Normalization

Primarily a tool to validate
and improve a logical
design so that it satisfies
certain constraints that
avoid unnecessary
duplication of data

The process of
decomposing relations
with anomalies to produce
smaller, well-structured
relations

Well-

Structured
Relations

A relation that contains minimal data redundancy
and allows users to insert, delete, and update
rows without causing data inconsistencies

Goal is to avoid anomalies

> Insertion Anomaly-adding new rows forces user to
create duplicate data

> Deletion Anomaly-deleting rows may cause a loss of
data that would be needed for other future rows

> Modification Anomaly-changing data in a row
forces changes to other rows because of
duplication

General rule of thumb: A table should not pertain
to more than one entity type.

EMPLOYEE2

EmplD Name DeptName Salary CoursaTitle DateCompleted
100 Margaret Simpson Marketing 48,000 SPSS 6/19/2015

100 Margaret Simpson Marketing 48,000 Surveys 10/7/2015

140 Alan Beeton Accounting 52,000 Tax Acc 12/8/2015
110 Chris Lucero Info Systems 43,000 Visual Basic 1/12/2015
110 Chris Lucero Info Systems 43,000 C++ 4/22/2015
100 Lorenzo Davis Finance 55,000 Tax Acc

150 Susan Martin Marketing 42,000 SPSS 6/19/2015
150 Susan Martin Marketing 42,000 Java 8/12/2015
Question—Is this a relation? Answer-Yes: Unique rows and no

multivalued attributes

Question—What’s the primary key? Answer—Composite: EmpID,
CourseTitle

Anomaly Example

Insertion—-can’t enter a new employee without
having the employee take a class (or at least
empty fields of class information)

Deletion-if we remove employee 140, we lose
information about the existence of a Tax Acc

class

Modification—giving a salary increase to employee
100 forces us to update multiple records

Why do these anomalies exist?

Because there are two themes (entity types) in
this one relation. This results in data duplication
and an unnecessary dependency between the

entities.

Anomalies

in this
Table

Table with
multivalued
attributes
Remov
multivalued
afttributes
First
normal
form
Remove
partial

Second
normal
form

Third
normal
form

Steps iIn Normalization

form

Fourth
normal
form

Fifth
norrmal
form

multivalued
dependencie

remaining
anomalies

Functional
Dependencies

and Keys

Functional Dependency: The
value of one attribute (the
determinant) determines the value
of another attribute

Candidate Key:

* A unique identifier. One of the candidate
keys will become the primary key

e e.g., perhaps there is both credit card
number and SS# in a table...in this case
both are candidate keys.

* Each non-key field is functionally
dependent on every candidate key.

First Normal Form

A ——
No multivalued attributes

!very O| |n!u|e VCIIUG N o|om|c

Normal form. I

All relations are in 1t Normal Form.

Table with multivalued attributes, not in 1t normal
form

INVOICE data (Pine Valley Furniture Company)

OrderdD Order Customer Customer Customer ProductlD Product Product Product Ordered
Date D MNama Address Description Finish StandardPrice Quantity
10086 10/24/2015 2 Valus Plano, TX 7 Dining Matural B0O0.00 2
Furniture Table Ash
5 Writer's Chemy 325.00 2
Desk
4 Entertainment Matural 650.00 1
Cantar Magple
1007 10/25/2015 B Fumniture Boulder, 11 4-Dr Oak 50000 4
Gallary co Drasser
4 Entertainment Matural 650.00 a3
Cantar Maple

Note: This is NOT a relation.

Table with no multivalued attributes and unigue
rows, in 15t normal form

INVOICE relation (1NF) (Pine Valley Furniture Company)

OrdedD Ordor Customer Customer Customer ProductlD Product Product Product Orderad
Dats D Name Address Dascrption Finish StandardPrice Quantity

1008 10/2472015 2 Valua Plana, TX 7 Dining Matural ~ 800.00 2
Furnitura Table Ash

1006 1072472015 2 Valua Plano, TX] Writer's Charry 325.00 2
Furnitura Dask

1006 10/24/2015 2 Value Planao, TX 4 Entortainment Matural 650.00 1
Furnitura Center Maple

1007 10/25/2015 6 Furniture Boulder, 11 4-Dr Oak 500.00 4
Gallery cO Dresser

1007 10/25/2015 (i1 Furnitura Bouldar, 4 Entorfainmant MNatural 650,00 3
Gallery co Center Maple

Note: This is a relation, but not a well-structured one.

> Insertion — if new product is ordered for order
1007 of existing customer, customer data must
be re-entered, causing duplication

> Deletion - if we delete the Dining Table from
Order 1006, we lose information concerning this
item’s finish and price

> Update — changing the price of product ID 4
requires update in multiple records

Why do these anomalies exist?

Because there are multiple themes (entity types)
in one relation. This results in duplication and an
unnecessary dependency between the entities.

Anomalies in this Table

SalesStaff

EmployeelD | SalesPerson | SalesOffice | OfficeNumber | Customerl | Customer2 | Customer3
1003 Mary Smith | Chicago 312-555-1212 | Ford GM

1004 John Hunt New York 212-555-1212 | Dell HP Apple
1005 Martin Hap | Chicago 312-555-1212 | Boeing

What are the Major Problems with this Approach?

Second Normal Form

» INF PLUS every non-key attribute is fully functionally
dependent on the ENTIRE primary key

> Every non-key afttribute must be defined by the
entire key, not by only part of the key

> No parfial functional dependencies

Full Dependency

Transitive Dependencies

‘

'

Y

QOrderlD

OrderDate

CustomeriD

CustomerName

CustomerAddress

ProductiD

ProductDescription

ProductFinish

Product
StandardPrice

OrderedQuantity

f

1

1

1

Partial Dependencies

i

1

)

Partial Dependencies

OrderID =» OrderDate, CustomerID, CustomerName, CustomerAddress
CustomerID =» CustomerName, CustomerAddress
ProductID =» ProductDescription, ProductFinish, ProductStandardPrice
OrderlID, ProductID = OrderQuantity

Therefore, NOT in 2" Normal Form

Functional Dependency Diagram for INVOICE

OrderlD ProductlD OrderedQuantity ORDER LINE (3NF)

Product
ProductlD ProductDescription ProductFinish StandardPrice | PRODUCT (3NF)
OrderlD OrderDate CustomerlD CustomerName CustomerAddress CUSTOMER ORDER (2NF)
| T T Getting it into
Transitive Dependencies
P Second Normal
Form

Partial dependencies are removed, but
there are still transitive dependencies

Removing Partial Dependencies

2NF PLUS no transitive
dependencies (functional
dependencies on non-primary-
key attributes)

Note: This is called transitive,
because the primary key is a

determinant for another
attribute, which in turn is a
determinant for a third

Solution: Non-key determinant
with fransitive dependencies
go into a new table; non-key
determinant becomes primary
key in the new table and stays
as foreign key in the old table

OrderDate CustomerlD ORDER (3N
et SEROTES (2NF) Getting it into

Third Normal
v Form

CustomerlD CustomerName CustomerAddress CUSTOMER (3NF)

Transitive dependencies are removed.

CUSTOMER ORDER
PK | Customer 1D | PK | Order ID

Customar Name Crrdir Data
FK1 | Customer ID

The following diagram shows the
result of normalization, yielding incudes
four separate relations where S
initially there was only one. (oK product 10 _ mm“i‘f’i‘ig"‘E

Product Dascription PE_FK2 | Product ID
Product Fimsh
Product Standard Price Ordesad Quantity

Removing Transitive Dependencies

Normalization example

Qur first task is to
present the data in a
tabular format as shown
on the next slide.

Looking at this data, we
can see that we are not
in first normal form
because we have no
keys, repeating groups
and mulfi-valued fields.

Address

Client

Pet1

Pet 2

Pet 3

Visits

Mary
Jones

55 Rhodes
St

Boomer,
Chihuahua

Trixie,
Schnauzer

Fred, Mixed

March 10 at
2:00pm (check
up)

Boomer, Trixie,
Fred

March 25 at
8:00am (spay)
Trixie

Jerome
Franklin

37583
Respite
Pines Lane

Esmerelda
Bulldog

r

Normalization example

May 27 at
1:00pm (check
up)

June 15 at
8:00am
(grooming)
August 5 at
8:00am
(grooming)

Normalization example

Things you should consider to
understand why this data is not
normalized:

What happens when a
customer has a fifth
pete Do we re-size the
entire database to add
that column@e What
about a sixth, seventh
or more¢

When most customers How do we search for
only have one ortwo values in a multi-valued
pets, we still have field like visitsg This can
additional space being be a processing
used for pet 3, pet 4 nightmare and involves
and so on. a lot of overhead.

Normalization example

How do we get our vet database
to first normal form (INF)2 To be in
first normal form we need:

e Unigue primary key
e One set of values per column
e One value per cell

Normalization

example

To improve
upon this,
we will start
by
normalizing
the data
info first
normal
form.

INF:

Each table cell should
contain a single value.

Each record needs to
be unigque.

Client

Address

Phone

Pet

Breed

Visits

Mary lones

55 Rhodes 5t

555-290-3083

Boomer

Chihuahua

March 10 at 2:00pm (check up)

Mary lones

55 Rhodes St

555-290-3083

Trixie

Schnauzer

March 10 at 2:00pm (check up)

Mary lones

55 Rhodes 5t

555-290-3083

Trixie

Schnauzer

March 25 at 8:00am (spay)

Mary lones

55 Rhodes St

555-290-3083

Fred

Mixed

March 10 at 2:00pm (check up)

Jlerome Franklin

37583 Respite
Pines Lane

555-450-4999

Esmerelda

Bulldog

May 27 at 1:00pm (check up)

lerome Franklin

37583 Respite
Pines Lane

555-450-4999

Esmerelda

Bulldog

June 15 at 8:00am (grooming)

Jlerome Franklin

37583 Respite
Pines Lane

555-450-4999

Esmerelda

Bulldog

August 5 at 8:00am (grooming)

Pat Cooper

1250 50 Avenue

555-408-3803

Mixed

September 12 at 4:00pm (check up)

Pat Cooper

1250 50% Avenue

555-408-3803

Mixed

Pat Cooper

1250 50 Avenue

555-408-3803

Poodle

Pat Cooper

1250 50 Avenue

555-408-3803

Great Dane

September 12 at 4:00pm (check up)

Normalization example

When we look at the data normalized to first
normal form, we see that we still have some
issues.

> Insertion anomalies

> Data about more than one entity in
the relation forces you to insert
data about an unrelated entity

Deletion anomalies

* - > Part of the primary key of a row
NormOhZOhon becomes null when the data are

| de:g’red, fo%%ing YOH ’r? regqciv? the

entire row. The result of a deletion
exam p € anomaly is the loss of data that you
would like to keep.

Update anomalies

> If every row is not changed, then
data that should be the same are
no longer the same. The potential
for these inconsistent data is the
modification anomaly

Normalization example

normal form, we will continue normalizing the
data to second normal form.

e reldron IS In Tirst normail rorm

* All non-key attributes are functionally dependent on the entire
primary key.

Normalization
example

What is functionally
dependent upon
clientid? The cent

informc‘l‘ion Obou‘l' ClientiD Client Address Phone
. p 1 Mary Jones 55 Rhodes St 555-290-3083
the client itself
2 Jerome Franklin 37583 Respite Pines Lane 555-450-4999
(hame, address,
3 Pat Cooper 1250 50" Avenue 555-408-3803

phone):

Normalization
example

The pets can be
isolated to their own
entity as well. We'll use
the primary key from
the client entity,
ClientiD, to tie the
clients to their pets.
Remember - they
could have multiple
pets. This structure
allows any given client
to have any number of
entries in the pet entity
without worrying about
having to resize the
database again and
Qgain.

Pet
PetID Pet Breed ClientID
1 Boomer Chihuahua |1
2 Trixie Schnauzer |1
3 Fred Mixed 1
4 Esmerelda | Bulldog 2
5 Snots Mixed 3
6 Spot Mixed 3
7 Sam Poodle 3
8 Suzy Great Dane | 3

Normalization example

The visits can be isolated to their own entity. We'll use the
?rimory key from the client entity, ClientlD, to tie the clients to

heir visits. Remember - they could have multiple pets. This
strucT(L;re allows any given client to have any number of visit
records.

VisitlD
1

Normalization
example

Next we'll deal with how pets
are tied to their visits. Recall that
our conceptual diagram
depicted a many-to-many
relationship between pets and
visits. In order to create this type
of relationship, we need another
table to serve as the go
between so that one pet can tie
to zero or more visit records and
one visit record can tie to one or
more pets. We can accomplish
this by creating a new table as
shown to the right.

PetVisit
PetID VisitID
1 1
2 1
2 2
3 1
4 3
4 4
4 5
5 6
8 6

Normalization
example

In order to reach third
normal form, we are going
to break out the pets and
their breeds.

In theory, the vet could store
information about various
breeds unrelated to the
actual client’s pets.

So, we will create a new
entity to store breeds and
modify the pet entity to
relate to it.

Normalization example

The relation is in There are no
second normal tfransitive
form. dependencies.

Pet

PetlD

Pet

BreedID

ClientID

Boomer

Trixie

Fred

Esmerelda

Snots

Spot

Sam

|~ || WM

Suzy

(PSR RV, R o T RS e R B S

wlw w(w|N| k|-

Breeds

t BreedID

Breed

Bulldog

Chihuahua

Great Dane

Mixed

Poodle

Schnauzer

Siberian Husky

0|~ ||| (W M|

Shih Tzu

Normalization
example

Normalization example

Keep in mind that this part of
the modeling process requires
you to think about the
scenarios that might exist using
sample data but you're not
dealing with the exact data
when designing a database.

Multiply this scenario by
thousands of records for any
given entity and you'll easily
see why we use such small
samples to work through this
process.

The logical design will depict
the entities and relationships
Next, we will document our but will also include the
logical design. attributes and primary/foreign
key information for this
normalized design.

Normalization example

	Slide 1: IT-234 – database concepts
	Slide 2: overview
	Slide 3: overview
	Slide 4: overview
	Slide 5: overview
	Slide 6: Database life cycle
	Slide 7: Components of THE relational model
	Slide 8: RelationS
	Slide 9: RELATIONS
	Slide 10: Key Fields
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Transforming ER Diagrams into Relations
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Transforming ER Diagrams into Relations (cont.)
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Transforming ER Diagrams into Relations (cont.)
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Transforming ER Diagrams into Relations (cont.)
	Slide 30
	Slide 31
	Slide 32: Transforming ER Diagrams into Relations (cont.)
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Data Normalization
	Slide 37: Well-Structured Relations
	Slide 38: Anomaly Example
	Slide 39: Anomalies in this Table
	Slide 40
	Slide 41: Functional Dependencies and Keys
	Slide 42: First Normal Form
	Slide 43
	Slide 44
	Slide 45: Anomalies in this Table
	Slide 46: Alternate Approach
	Slide 47: Second Normal Form
	Slide 48
	Slide 49
	Slide 50: Third Normal Form
	Slide 51
	Slide 52: Normalization example
	Slide 53: Normalization example
	Slide 54: Normalization example
	Slide 55: Normalization example
	Slide 56: Normalization example
	Slide 57: Normalization example
	Slide 58: Normalization example
	Slide 59: Normalization example
	Slide 60: Normalization example
	Slide 61: Normalization example
	Slide 62: Normalization example
	Slide 63: Normalization example
	Slide 64: Normalization example
	Slide 65: Normalization example
	Slide 66: Normalization example
	Slide 67: Normalization example
	Slide 68: Normalization example

