
IT-234 – database

concepts
UNIT 2 – THE LOGICAL DATABASE MODEL AND DATABASE

NORMALIZATION

overview

Logical database design typically
entails synthesizing individual
data elements into normalized
tables after careful analysis of
data element interdependencies
defined by business requirements
analysis.

The logical data model
specifically adds attributes,
primary keys, and foreign keys.

overview

The tables will be able to store
data about the organization’s

entities in a non-redundant
manner, and foreign keys will

be placed in the tables so that
all the relationships among the

entities will be supported.

You are adding more detail to
your data model, but there is
still no dependence on any

database system.

overview

The logical data model will be
describing the data
requirements from a business
point of view.

The goal of logical database
design is to create well-
structured relations that
properly reflect the
company's business
environment.

overview

After completing this unit, you should
be able to:

➢ Identify attributes for entities
in the database.

➢ Define data type and
nullability.

➢ Identify all primary keys for
entities in the database.

➢ Recognize any foreign keys
required for entities in the
database.

➢ Create an entity relationship
diagram (ERD) that reflects
the logical data model.

Database life cycle

Components

of THE

relational

model

• Tables (relations), rows,
columns

Data structure

• Powerful SQL operations for
retrieving and modifying data

Data manipulation

• Mechanisms for implementing
business rules that maintain
integrity of manipulated data

Data integrity

RelationS

A relation is a named, two-dimensional
table of data.

A table consists of rows (records) and
columns (attribute or field).

Requirements for a table to qualify as
a relation:

•It must have a unique name.

•Every attribute value must be atomic (not
multivalued, not composite).

•Every row must be unique (can’t have two rows
with exactly the same values for all their fields).

•Attributes (columns) in tables must have unique
names.

NOTE: All relations are in 1st Normal
form.

RELATIONS

Relations (tables) correspond with entity types and with
many-to-many relationship types.

Rows correspond with entity instances and with many-
to-many relationship instances.

Columns correspond with attributes.

NOTE: The word relation (in relational database) is NOT
the same as the word relationship (in E-R model).

Key Fields

 Keys are special fields that serve two main purposes:

➢ Primary keys are unique identifiers of the relation.
Examples include employee numbers, social security
numbers, etc. This guarantees that all rows are
unique.

➢ Foreign keys are identifiers that enable a dependent
relation (on the many side of a relationship) to refer
to its parent relation (on the one side of the
relationship).

 Keys can be simple (a single field) or composite (more
than one field).

 Keys usually are used as indexes to speed up the
response to user queries

Schema for four relations (Pine Valley Furniture
Company)

Primary Key

Foreign Key
(implements 1:N relationship

between customer and order)

Combined, these are a composite primary key

(uniquely identifies the order line)…individually

they are foreign keys (implement M:N relationship

between order and product)

Referential integrity constraints (Pine Valley Furniture)

REFERENTIAL INTEGRITY CONSTRAINTS ARE DRAWN VIA ARROWS FROM
DEPENDENT TO PARENT TABLE

SQL table definitions

Referential integrity

constraints are

implemented with

foreign key to

primary key

references

Transforming ER Diagrams into
Relations

Mapping Regular Entities to Relations

➢ Simple attributes: E-R attributes map directly onto

the relation

➢ Composite attributes: Use only their simple,

component attributes

➢ Multivalued Attribute: Becomes a separate relation

with a foreign key taken from the superior entity

Mapping a Regular Entity

CUSTOMER ENTITY TYPE WITH SIMPLE ATTRIBUTES

CUSTOMER relation

Mapping a Composite Attribute

CUSTOMER

entity type

with

composite

attribute

CUSTOMER relation with address detail

Mapping an Entity with a Multivalued Attribute

Transforming ER

Diagrams into

Relations (cont.)

Mapping Binary Relationships

➢ One-to-Many–Primary key on the

one side becomes a foreign key

on the many side

➢ Many-to-Many–Create a new

relation with the primary keys of

the two entities as its primary key

➢ One-to-One–Primary key on
mandatory side becomes a

foreign key on optional side

Example of Mapping a 1:M Relationship
RELATIONSHIP BETWEEN CUSTOMERS AND ORDERS

Example of Mapping an M:N
Relationship
“COMPLETES” RELATIONSHIP (M:N)

The Completes relationship will need to become a separate relation.

Example of Mapping an M:N
Relationship (cont.)
THREE RESULTING RELATIONS

Example of Mapping a Binary 1:1 Relationship
“IN CHARGE” RELATIONSHIP (BINARY 1:1)

Example of Mapping a Binary 1:1 Relationship (cont.)

RESULTING RELATIONS

Foreign key goes in the relation on the optional side,

matching the primary key on the mandatory side

Transforming

ER Diagrams

into

Relations

(cont.)

Mapping Associative Entities

 Identifier Not Assigned

➢ Default primary key for the
association relation is
composed of the primary
keys of the two entities (as
in M:N relationship)

 Identifier Assigned

➢ It is natural and familiar to
end-users

➢ Default identifier may not
be unique

Example of Mapping an Associative Entity

AN ASSOCIATIVE ENTITY

Example of Mapping an
Associative Entity (cont.)
THREE RESULTING RELATIONS

Example of Mapping an Associative Entity with

 an Identifier
SHIPMENT ASSOCIATIVE ENTITY

Example of Mapping an Associative Entity with

 an Identifier (cont.)

Three Resulting Relations

Primary key differs from foreign

keys

Transforming ER Diagrams into
Relations (cont.)

Mapping Unary Relationships

 One-to-Many – Recursive foreign key in the same
relation

 Many-to-Many – Two relations:

➢ One for the entity type

➢ One for an associative relation in which the
primary key has two attributes, both taken from
the primary key of the entity

Mapping a Unary 1:N Relationship

EMPLOYEE

entity with unary

relationship

EMPLOYE

E relation

with

recursive

foreign key

Mapping a unary M:N relationship

Bill-of-materials

relationships (unary M:N)

ITEM and

COMPONEN

T relations

Transforming

ER Diagrams

into Relations

(cont.)

Mapping Ternary (and n-ary) Relationships

 One relation for each entity and one
for the associative entity

 Associative entity has foreign keys to
each entity in the relationship

Mapping a Ternary Relationship
PATIENT TREATMENT TERNARY RELATIONSHIP WITH ASSOCIATIVE ENTITY

Mapping a

Ternary

Relationship (cont.)

Mapping the ternary relationship PATIENT TREATMENT

Mapping a Ternary Relationship (cont.)

Mapping the ternary relationship PATIENT TREATMENT

Data Normalization

Primarily a tool to validate
and improve a logical

design so that it satisfies
certain constraints that

avoid unnecessary
duplication of data

The process of
decomposing relations

with anomalies to produce
smaller, well-structured

relations

Well-

Structured

Relations

A relation that contains minimal data redundancy
and allows users to insert, delete, and update
rows without causing data inconsistencies

Goal is to avoid anomalies

➢ Insertion Anomaly–adding new rows forces user to
create duplicate data

➢ Deletion Anomaly–deleting rows may cause a loss of
data that would be needed for other future rows

➢ Modification Anomaly–changing data in a row
forces changes to other rows because of
duplication

General rule of thumb: A table should not pertain

to more than one entity type.

Anomaly Example

Question–Is this a relation? Answer–Yes: Unique rows and no

multivalued attributes

Question–What’s the primary key? Answer–Composite: EmpID,

CourseTitle

Anomalies

in this

Table

Insertion–can’t enter a new employee without
having the employee take a class (or at least
empty fields of class information)

Deletion–if we remove employee 140, we lose
information about the existence of a Tax Acc
class

Modification–giving a salary increase to employee
100 forces us to update multiple records

Why do these anomalies exist?

Because there are two themes (entity types) in

this one relation. This results in data duplication

and an unnecessary dependency between the

entities.

Steps in Normalization
3RD NORMAL FORM IS GENERALLY CONSIDERED SUFFICIENT

Functional

Dependencies

and Keys

Functional Dependency: The
value of one attribute (the
determinant) determines the value
of another attribute

Candidate Key:

• A unique identifier. One of the candidate
keys will become the primary key

• e.g., perhaps there is both credit card
number and SS# in a table…in this case
both are candidate keys.

• Each non-key field is functionally
dependent on every candidate key.

First Normal Form

No multivalued attributes

Every attribute value is atomic

The example on the next slide is not in 1st Normal
Form (multivalued attributes) ➔ it is not a relation.

The example on the subsequent slide is in 1st
Normal form.

All relations are in 1st Normal Form.

Table with multivalued attributes, not in 1st normal
form

Note: This is NOT a relation.

Table with no multivalued attributes and unique
rows, in 1st normal form

Note: This is a relation, but not a well-structured one.

Anomalies in this Table

➢ Insertion – if new product is ordered for order
1007 of existing customer, customer data must
be re-entered, causing duplication

➢ Deletion – if we delete the Dining Table from
Order 1006, we lose information concerning this
item’s finish and price

➢ Update – changing the price of product ID 4
requires update in multiple records

Why do these anomalies exist?

Because there are multiple themes (entity types)

in one relation. This results in duplication and an

unnecessary dependency between the entities.

Alternate Approach
Handling Multi-Value Attributes by Adding Fields to the Table

What are the Major Problems with this Approach?

Second Normal Form

 1NF PLUS every non-key attribute is fully functionally
dependent on the ENTIRE primary key

➢ Every non-key attribute must be defined by the
entire key, not by only part of the key

➢ No partial functional dependencies

Functional Dependency Diagram for INVOICE

OrderID ➔ OrderDate, CustomerID, CustomerName, CustomerAddress

Therefore, NOT in 2nd Normal Form

CustomerID ➔ CustomerName, CustomerAddress

ProductID ➔ ProductDescription, ProductFinish, ProductStandardPrice

OrderID, ProductID ➔ OrderQuantity

Removing Partial Dependencies

Partial dependencies are removed, but

there are still transitive dependencies

Getting it into
Second Normal

Form

Third

Normal

Form

2NF PLUS no transitive
dependencies (functional
dependencies on non-primary-
key attributes)

Note: This is called transitive,
because the primary key is a
determinant for another
attribute, which in turn is a
determinant for a third

Solution: Non-key determinant
with transitive dependencies
go into a new table; non-key
determinant becomes primary
key in the new table and stays
as foreign key in the old table

Removing Transitive Dependencies

Normalization example

Our first task is to
present the data in a

tabular format as shown
on the next slide.

Looking at this data, we
can see that we are not

in first normal form
because we have no

keys, repeating groups
and multi-valued fields.

Normalization example

Normalization example

Things you should consider to
understand why this data is not

normalized:

What happens when a
customer has a fifth

pet? Do we re-size the
entire database to add

that column? What
about a sixth, seventh

or more?

When most customers
only have one or two

pets, we still have
additional space being

used for pet 3, pet 4
and so on.

How do we search for
values in a multi-valued
field like visits? This can

be a processing
nightmare and involves

a lot of overhead.

Normalization example

How do we get our vet database
to first normal form (1NF)? To be in
first normal form we need:

•Unique primary key

•One set of values per column

•One value per cell

Normalization

example

To improve
upon this,
we will start
by
normalizing
the data
into first
normal
form.

1NF:

Each table cell should
contain a single value.

Each record needs to
be unique.

Normalization example
TABLE IN 1NF

Normalization

example

When we look at the data normalized to first
normal form, we see that we still have some
issues.

 Insertion anomalies

➢ Data about more than one entity in
the relation forces you to insert
data about an unrelated entity

 Deletion anomalies

➢ Part of the primary key of a row
becomes null when the data are
deleted, forcing you to remove the
entire row. The result of a deletion
anomaly is the loss of data that you
would like to keep.

 Update anomalies

➢ If every row is not changed, then
data that should be the same are
no longer the same. The potential
for these inconsistent data is the
modification anomaly

Normalization example

To alleviate some of the issues we find in first
normal form, we will continue normalizing the
data to second normal form.

2NF:

• The relation is in first normal form.

• All non-key attributes are functionally dependent on the entire
primary key.

We start by isolating each group of data into its
own entity.

Normalization
example

What is functionally

dependent upon

client id? The

information about

the client itself

(name, address,

phone):

Normalization
example

The pets can be
isolated to their own
entity as well. We’ll use
the primary key from
the client entity,
ClientID, to tie the
clients to their pets.
Remember – they
could have multiple
pets. This structure
allows any given client
to have any number of
entries in the pet entity
without worrying about
having to resize the
database again and
again.

Normalization example

The visits can be isolated to their own entity. We’ll use the
primary key from the client entity, ClientID, to tie the clients to
their visits. Remember – they could have multiple pets. This
structure allows any given client to have any number of visit
records.

Normalization

example

Next we’ll deal with how pets
are tied to their visits. Recall that
our conceptual diagram
depicted a many-to-many
relationship between pets and
visits. In order to create this type
of relationship, we need another
table to serve as the go
between so that one pet can tie
to zero or more visit records and
one visit record can tie to one or
more pets. We can accomplish
this by creating a new table as
shown to the right.

Normalization

example

 In order to reach third

normal form, we are going

to break out the pets and

their breeds.

 In theory, the vet could store

information about various

breeds unrelated to the

actual client’s pets.

 So, we will create a new

entity to store breeds and

modify the pet entity to

relate to it.

Normalization example

3NF

The relation is in
second normal

form.

There are no
transitive

dependencies.

Normalization

example

Normalization example

Keep in mind that this part of
the modeling process requires
you to think about the
scenarios that might exist using
sample data but you’re not
dealing with the exact data
when designing a database.

Multiply this scenario by
thousands of records for any
given entity and you’ll easily
see why we use such small
samples to work through this
process.

Next, we will document our
logical design.

The logical design will depict
the entities and relationships
but will also include the
attributes and primary/foreign
key information for this
normalized design.

Normalization example

	Slide 1: IT-234 – database concepts
	Slide 2: overview
	Slide 3: overview
	Slide 4: overview
	Slide 5: overview
	Slide 6: Database life cycle
	Slide 7: Components of THE relational model
	Slide 8: RelationS
	Slide 9: RELATIONS
	Slide 10: Key Fields
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Transforming ER Diagrams into Relations
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Transforming ER Diagrams into Relations (cont.)
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Transforming ER Diagrams into Relations (cont.)
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Transforming ER Diagrams into Relations (cont.)
	Slide 30
	Slide 31
	Slide 32: Transforming ER Diagrams into Relations (cont.)
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Data Normalization
	Slide 37: Well-Structured Relations
	Slide 38: Anomaly Example
	Slide 39: Anomalies in this Table
	Slide 40
	Slide 41: Functional Dependencies and Keys
	Slide 42: First Normal Form
	Slide 43
	Slide 44
	Slide 45: Anomalies in this Table
	Slide 46: Alternate Approach
	Slide 47: Second Normal Form
	Slide 48
	Slide 49
	Slide 50: Third Normal Form
	Slide 51
	Slide 52: Normalization example
	Slide 53: Normalization example
	Slide 54: Normalization example
	Slide 55: Normalization example
	Slide 56: Normalization example
	Slide 57: Normalization example
	Slide 58: Normalization example
	Slide 59: Normalization example
	Slide 60: Normalization example
	Slide 61: Normalization example
	Slide 62: Normalization example
	Slide 63: Normalization example
	Slide 64: Normalization example
	Slide 65: Normalization example
	Slide 66: Normalization example
	Slide 67: Normalization example
	Slide 68: Normalization example

