Instructions: You must show all work to receive full credit for the problems below. You may check your work with a calculator, but answers without work will receive minimal credit. Use exact answers unless the problem starts with decimals or you are specifically asked to round.

- 1. For each of the sets below, determine if the set represents a vector space. If it does, prove it by testing all three conditions for a subspace. If it does not, find at least one case where the vector space conditions are violated.
 - a. The set of complex numbers C, in the form a+bi, where a,b are real numbers.

X= a+bi, C+di=y a,b,c,d
$$\in \mathbb{R}$$

X+y=(a+c)+(b+d)i in set

is a vector space

(subspace as omorphic bo \mathbb{R}^2)

 $0=0+0i$ in set

 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 $0=0+0=0$
 0

d. The set of polynomials of less than or equal to degree 4 of the form $p(t) = a_1t + a_2t^2 + a_4t^4$ as a subspace of P_4 . $g(t) = b_1t + b_2t^2 + b_4t^4$ $p(t) + g(t) = (a_1+b_1)t + (a_2+b_2)t^2 + (a_4+b_4)t^4 \quad \text{in det}$ $kp(t) = (ka_1)t + (ka_2)t^2 + (ka_4)t^4 \quad \text{in det}$ $p(t) = 0 \quad \text{in det} \quad y \quad a_1 = 0, \quad a_2 = 0, \quad a_4 = 0$