Instructions: Show all work. Answers without work required to obtain the solution will not receive full credit. Some questions may contain multiple parts: be sure to answer all of them. Give exact answers unless specifically asked to estimate.

1. Use reduction of order to solve $t^2y'' - t(t+2)y' + (t+2)y = 0$, $y_1 = t$.

du = u => (du = fat

v' = Aet v' = Aet v' = Aet $v = \int Aet dt = Aet$ $v = \int Aet dt = Aet$

2. Use the method of undetermined coefficients to solve $y'' + 2y' + y = 2e^{-t}$.

17+2+1=0 (++1)2=0 Yz-1 $t^{2}+\lambda r+1=0$ $(r+1)^{2}=0$ $r^{2}-1$ $y(+)=c_{1}e^{-t}+c_{2}te^{-t}$ $2Ae^{t}-4Ate^{-t}+At^{2}e^{-t}+4Ate^{-t}-2At^{2}e^{-t}+At^{2}e^{-t}$ $2Ae^{-t}=2e^{-t}$ $\Rightarrow A=1$ $=2Ae^{-t}-4Ate^{-t}+At^{2}e^{-t}$ $=2Ae^{-t}-4Ate^{-t}+At^{2}e^{-t}$

yp(t)= e, e-t + cate-t + t2e-t

3. Find the inverse of $A = \begin{pmatrix} 1 & 3 \\ -1 & 2 \end{pmatrix}$.

det A= 2+3=5

5(2 -3) = (2/5 -3/5)

4. What Ansatz would you need to solve for the given forcing function F(t) and the specified solutions $y_1(t)$, $y_2(t)$ to the second order ODE.

5 to the second of the second				
	$y_1(t)$	$y_2(t)$	F(t)	Ansatz
a.	sin t	cost	$3e^{2t}$	Ae ²⁺
b.	e^{-t}	e^{-4t}	$-5e^t\cos 2t$	Actoolt + Betsinzt
c.	e^t	e^{-2t}	$t^2 + 7e^t$	At3+Bt+C+Dtet
d.	sin 3t	cos 3t	4 sin 3 <i>t</i>	At sin3t + Btcos3+

5. A spring with a mass of 2 kg has damping constant 14, and a force of 6 N is required to keep the spring stretched in beyond its natural length. The spring is stretched 1 m beyond its natural length and then released with zero velocity. Find the position of the mass at any time t. (Set up the ODE and state initial conditions only; you don't need to solve.)

$$m=2$$
 $y=14$ $F=kx$ $y(0)=1$ $y'(0)=0$

$$my'' + 8y' + ky = 0$$

$$2y'' + 14y' + 3y = 0$$