Betsy McCall
V Nototion

Multivariable calculus uses 2 special characters, both based on the Greek letter
delta: V and 0. You can think of the former like the “uppercase” and the latter as
the “lowercase” versions of the same character, and both are pronounced “del”. ¢

is used in partial derivatives: % VS. j_z to indicate the former is a partial
X X

derivative where the second one is not.

The V notation is considerably more complicated as an operator and it is used in
several different ways. We’ll go through each of these, one at a time, and look at
what happens when we apply V in coordinate systems other than rectangular

coordinates. V is a vector and so often you will see it written as V.
1. The Gradient
The V notation is first encountered in calculating the gradient of a function.

V is short for a vector whose components are the operators for taking derivatives:

<3 9 2> These are the partial derivative operators for each variable. In the

ox' oy oz
gradient, this vector is used like a vector multiplied by a scalar. Consider the
vector <X,y,z> multiplied by the constant a: <x,y,z>a=<xa,ya,za>. Similarly,
Vi = QQQ f= ﬂﬂﬂ . The resulting vector, therefore, is a vector whose
OX 0y oz OX 0oy 01
components are the partial derivatives of the function.!?

Vi is also sometimes written as just grad f .
Let’s look at a specific example.

Example 1. Find Vf for f(x,y,z)=3x"+2y’z.

vf :<%,%,%>:<6x,4yz,2y2>

Vf takes a function and turns it into a vector. Make sure that’s what you get.

! Note: we multiplied on the right in our example, even though it’s non-standard for most
vectors and constants because the order matters when working with operators, and this
made the analogy a little less opaque.
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What happens, though, if our function is in cylindrical (polar) or spherical
coordinates?

What we can’t do is work in rectangular, because not only must our coordinate
values change, but the coordinates themselves change relationships to each other.
I won't derive the gradient vector here, but I will give you the resulting formulas
below. Our goal will be to apply them correctly.

In cylindrical coordinates: \% :<

0
00

o 1 9
op >

In spherical coordinates: V= y -
psing 06

Let’s see how different this makes things look by converting our function from
example 1 into cylindrical and spherical coordinates and seeing what the gradient
looks like. It should be noted that this is isn’t going to be a pretty function in either
system and so the gradient will be messy. In practice, you'll be applying these to
functions that are simpler in cylindrical or spherical than in rectangular.

Example 2. Find Vf for f(x,y,z)=3x*+2y’z in cylindrical and spherical
coordinates.

f(x,y,2)=3x*+2y°z
f(r,0,z) =3r?cos* & +2r?zsin’
f(p,0,0) =3p*sin® pcos® @ +2p°sin’ psin® @cos g

In cylindrical then:

ﬁ_Grcos 20+4rzsin® 0

or
E[ J 6r cos@sin @+ 4r zschosH] —6rcos@sin@ +4rzsin @cosd
r

——2r sin® @

0z

Vi yinaricar = (BT COS 0+ 4rzsin® 6, -6r cos Osin 0+ 4rzsin Hcos 0, 2r° sin’ )

Only the z coordinate in this example is what you’d expect from simply converting
the rectangular gradient because the z direction is the only one that didn’t change.

In spherical:
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Z—f =6psin” pcos® §+6p”sin’ psin® Gcos g
0

l[si :E[szsingocowcosz¢9+4pgsin¢>cos<osin20003¢—2p3sin2¢)sin205in¢]
plop] p

=60%sin @ cos pCcos* @ +4p” sin p cos gsin® @ cos ¢ — 2 p* sin® psin® @
1 [of 1
psSing _%} - psSing
= —6sinpcos@sin @ +4p®sin pcospsin §cosb

[—6,02 sin® g cos @sin @+ 4p°sin® p cos ¢sin 6 cos 49]

6,05in* pcos® @ + 6 p*sin® psin® O cos @

vf 6,07 sin ¢ coS @ cos” O+ 4 p®sin @ cos psin® @ cosp —2p° sin® psin® @

spherical =

—6psin @ cos@sin @ +4p” sin ¢ cos psin &cos &

Note the product rule that was necessary for the derivative with respect to ¢, and I
wrote the final result in vertical form because it’s so long, it runs right off the side
of the page if written horizontally.

There are certain fields, particularly in physics, where you will work almost
exclusively in cylindrical or spherical coordinates because that’s where the
equations are simplest. The practice problems below contain functions in each of
the three major coordinate systems for you to practice on. Apply the correct
gradient formula to each problem. You should not need to convert systems for any
problem.

Practice Problems.
a. Find the gradient, Vf , for each function in the appropriate gradient formula.

1. f(x,y,2)=xy*+x’z+yz°

2. f(x,y,z)=xycosz

3. f(x,y,z)=2ze?

4. f(xvy,z)=tan(x+y)+tan(yz) -1
5. f(x,y,2)=xIny+y*z+2°-8

6

f(X,y,2) =+/25-5%* —5y?
f(x,y,2)= !
,1—X2 2 7P

8. f(r,68,z)=rcscHcotl

9. f(r,0,2)=r’cos20+z°+1
10. f(r,0,z)=r?cos’ 6 -z

_ 6
1-rcos@
12. f(r,6,2)=re’ +z

7.

11. f(r,6,2)=r’z—
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13. f(p,p,0)=4pcose
14. f(p,p,0)=3pcscpsecd

15. f(p,0,0)=p*—2pcose
16. f(p,0,0)=p*sin*p+2ptand

This handout is about the “how-to”. Applications will be dealt with elsewhere.

2. The Curl

The V is used in finding the curl of a vector as well. Here we write it as VxF , or

sometimes you'll just see curl F. Since V is a vector and here F is also, we
calculate the curl the same way we do a cross product. Recall that for a vector

u={(a,b,c) and v={x,y,z), then UxV is given by the determinant of the matrix
k

c :(bz—cy)i—(az—cx)j+(ay—bx)k.

z

[
a
X

< T e

Similarly, for VxF , where F =(M,N,P), we have
i k

j
0 0 of (P N i_(a_P_(MjH N _oM ),
OX oy oz oy oz ox oz ox oy
N P

The result is another vector. For rectangular coordinates, this method is probably
better than memorizing the formula that results. For cylindrical and spherical
coordinates, if there is a nice way of memorizing the formulas for the curl, I don’t
know what it is.

In cylindrical, VxF where Ez(M,N,P) (whose coordinates are (r,8,z)
coordinates), we get 1P _N , M _P 1 g[rN]—% .
r o0 oz oz or)r \or 06

In spherical, VxF where Ez(M , N,P> (whose coordinates are (p,¢,0) coordinates)

1 (o6, PY1( 1 oM & 1(0o oM
t — N|-— |, = | — ———=[pN]|,=| —[pP]-—1).
e oe <psin<p[8(ﬂ[5m¢ ] 59} P [Sinw 00 8p[p ]j P (8/9[/) ] 8¢J>

Example 3. F(xY,2)=(xy,yz xz). Find the curl.
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ik
fozg % %=(0—y)i—(z—0)j+(0—x)k:<—y,—z,—x>
Xy yz xz

Example 4. Find VxF for F(p,p,0)=(p’sing, pcoso,sinpcos).

Before we take the derivative in the first coordinate we need to multiply the N
function by sing: sing(pcosf) = psinpcosd, and then take the derivative of that

with respect to @ = pcosepcosd. And we also need %(sin @cosf)=-singpsing . Put

these together to complete the first coordinate:
. . in

: [,ocos<oc056’+sm(psm«9]=cotgo(:os¢9+u

psing p

The second coordinate needs ,o(,ocosé?)z,o2 cosd and the derivative with respect to

p of that = 2pcos@. We also need a—ae[pzsin ¢|=0. Therefore, our second

coordinate, if we put this all together is 1[0—2,oc059]:—2c056?.

For the third coordinate, we need p(singcos@) and the derivative of this with

respect to p = singcoséd, and we also need éi[pzsin (0]:,02 cosg . Putting these
2

1r. 1.
together we get —[sm pcosf—p° cos(p]:—sm @COSE— pCoOSQ .
P P

Put these three components together to get the curl:

?xf:<cot¢cos€+w,—2cose,isin¢cose—pc05¢> :
P P

Practice Problems.
b. For each of the following functions, calculate the curl in the appropriate
coordinate system.

17. F(X, Y, z)=<xyz,x2y, yzz>
18. F(x,Y,2)={cosxy,sinxz,tan y)

19. F(x, y,z)=<\/ y22 =] XZZ —, arcsin xy>
1-x°y° J1-Xx%y
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20. F(X,y)= <1 1 O>

21. F(r,0,2) =(r’sin0,rsecd, z)

22. F(r,0,2) =(tanz,arctanr, 0)

23. F(r,0,2) =(

24. F(p,p,0) =(psinpcosd, psin psin, pcos p)
25. F(p, gp,9)=<p @sin @, ° cos 6’>

Inr,rcosz, ztan 9)

26. E(p,gp,@) 1 =, p’sin® qoé? Inp>
P

3. The Divergence

The third major application of the V notation is to calculate the divergence of a
vector field. The divergence itself is a function and not a vector. What operation

turns a vector into a humber? The dot product. So the divergence is given by V-F
or sometimes just divF . For F=(M,N,P), this gives

222 <M,N,P>=ﬂ+ﬁ+@.
ox' oy oz oXx oy oz

Of course, nothing is quite so simple in cylindrical or spherical coordinates are given
below, respectively.

VE:l.i[rM] 10N oP
r or r 00 oz
- = 1 01, . 1 oP
V-FE=—.2[ oM “ : &
p’ ar[p ]+p5|n(p (D[SIn(p ]+psin§08¢9

Not pretty, but not as bad as the curl formulas.

Example 5. Find the divergence of F(x,Y, z) =<yz,cos xy,x2y>.
V-F =0+ (=sinxy-x)+0=—xsin xy

Example 6. Find the divergence of F(p,,0) =<p2 sin ¢,92,goc059>.



Betsy McCall

d 0
a_[/? P sm(ﬂ]+psm¢ —¢[smgo 2|+ psm(pae[ ¢ cosé]
plsing]+ L [sing-0*]+—— 2 [pcoso)]
psing dp psing 06
2 .
Sm(o} ——[cosp-0” |+ — [—(psin6?]=4psin(p+9 cotg gsing
psIng psing P psing

Practice Problems.
c. Find the divergence of each vector function in the appropriate coordinate

system.
27. F(X,Y, z)=<xyz,x2y, yzz>
28. F(x,Y,z)={cosxy,sinxz,tan y)
29. F(x,y,2) = Yz : X ,arcsin xy
\/1—x2y2 \/1—x2y2
30. F(x, y):<1,£,0>
Xy
31. F(r,6, z):<rzsin9,rse00,z>
32. F(r,0,z) =(tanz,arctanr,6)
33. F(r,0,z)=(Inr,rcosz,ztan 6)
34. F(p,0,0) =(psingcosd, psingsiné, pcos p)
35. E(p,go,@):<p3,6'singo,¢)2 cos? 0>
36.

F(p.0,0)= <%,p2 sin’(¢0),In p>

When dealing with vectors, we can also combine the cross product and the dot
product into the triple scalar product. However, the divergence of the curl is always

zero. In

V notation, V-(VxF)=0.

4. The Laplacian

There is a fourth way to use V notation, which is to dot the V with a gradient
vector: V~(Vf ) , or more compactly written V*f . Just as with our other use of the

dot product, it produces a function, here, the sum of the second derivatives.

o 9 a><af of af>_62f *f 8%

A AT A T TR
ox' oy oz ox® oy° oz
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This is called the Laplacian.

In cylindrical we have

.
r2 060* 0oz°

vl o] 1015
or

And in spherical we have

2
SO WY P12 N P R}

p° op op pzsinq).% % pzsinzgo'aé’z

Example 7. Find the Laplacian of f(x,y,z)=3x*+2y’z.
% :3(6x)+£(4yz)+i(2y2):6+4z+0:6+4z
OX oy 0z

Example 8. Find the Laplacian of f(p,¢,6)=p’cosésing .

a—f =2pcosdsing = 2p°cosésinp = 6> cosfsin g = 6cosdsin g
Fe
(;i = p’ c0s0cosp = p’ cosOsin pcosp = p’ cosH(cos’ ¢ —sin’ p) =
4

cos6(cos® ¢ —sin’ )

_ =cosd(cotpcosp—sing)
sing

ﬂ =—p®sin@cosp = —p° cosHcosp = —w:—cosecotgpcscw
00 sin“ @

VZf =6cos@sinp+cos O (cot g cosp—sing)—cosdcot pcscp

Practice Problems.
d. Find the Laplacian of the following functions in the appropriate coordinate
systems.

37. f(x,y,2) =xy* + X’z + yz*

38. f(x,y,z)=xycosz

39. f(x,y,z)=2e"

40. f(x,y,z)=tan(x+y)+tan(yz)-1
41. f(x,y,2)=xIny+y’z+2°-8
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42.

43,

44,
45.
46.

47.

48.
49.
50.

51.
52.

f(X,y,2) =+/25-5%* —5y?
f(x,y,2)= !
,1—X2 2 7P

f(r,0,z)=rcscédcotd
f(r,0,z2)=r’cos20+z° +1
f(r,0,z2)=r’cos’ 60—z
_6
1-rcosé@
f(r,0,z)=re’ +z
f(p,0,0)=4pcose
f(p,,0)=3pcscepsecld
f(0,9,0)=p*-2pcose
f(p,0,0)=p’sinp+2ptand

f(r,0,2)=r’z—

Of course, this barely scratches the surface of V notation. Because it is a
derivative operator, it has its own set of product rules. I list them here.

Vi.
Vil.

viii.

V(fg)=fvg+gVf
V(K-ﬁ)=Kx(Vx§)+§x(VxK)+(K-V)§+(§~V)K
V-(fA)=f(V-A)+A-Vf

v

Practice Problems.
e. For each of the product rules listed above, verify each rule with the given
functions. Verify the rule by completing both sides of the expression and
show that they are equal.

53.

f(x,y,2)=x+y+z, g(XV,z)=xyz
A(x,y,2)=(x,y,2), B(xY,2)=(y,z,x)
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f(r,6,2)=r?cos@+z, g(r,0,z)=r+zsind
54. _ —
A(r,0,z) =(r,tan6,z), B(r,6,2) :<z,ln r,e‘9>
f(p,0,0)=pcos@sing, g(p,@,0)=0sin ptangp
55. — _
Ap,9.0)=(p.0,0), B(p,p,0)= <p2,pln @, arctan 9>

10



