
Lecture 2

Distance measurements
Scaling methods

Distance Metrics
In machine learning models like k-nearest neighbors (KNN) or k-means clustering, distance metrics play a
crucial role in measuring the similarity or dissimilarity between data points. Commonly used distance
metrics include:

Euclidean Distance: This is the most common distance metric, measuring the straight-line distance
between two points in Euclidean space.

Manhattan Distance (Taxicab or City Block Distance): Manhattan distance is the sum of the absolute
differences between the coordinates of the points. It measures the distance along the grid-like paths
formed by a city block.

Minkowski Distance: Minkowski distance is a generalization of both Euclidean and Manhattan distances.
The parameter "p" determines the specific type of distance:
When p = 1, it reduces to Manhattan distance.
When p = 2, it reduces to Euclidean distance.
For other values of p, it's a generalization of both.

Cosine Similarity: Although not a distance metric per se, cosine similarity measures the cosine of the
angle between two vectors, indicating their similarity in direction rather than magnitude.

Hamming Distance: Hamming distance measures the number of positions at which corresponding
symbols are different between two strings of equal length. It is commonly used for categorical variables
or binary data.

Jaccard Distance: Jaccard distance measures dissimilarity between two sets by dividing the size of their
intersection by the size of their union. It is frequently used for comparing binary data or sets.

Less common distance metrics include:
Chebyshev Distance (Maximum Value Distance): Chebyshev distance is the maximum absolute difference
between the coordinates of the points along any dimension. It measures similarity based on the
maximum difference in any dimension.

Mahalanobis Distance: Mahalanobis distance takes into account the correlations between variables and
is scaled by the inverse of the covariance matrix. It is sensitive to the covariance structure of the data
and is useful when the data is not spherical.

Levenshtein Distance (Edit Distance): Levenshtein distance measures the minimum number of single-
character edits (insertions, deletions, or substitutions) required to change one string into the other. It's
commonly used in natural language processing for spell checking, DNA analysis, and other string
similarity tasks.

Earth Mover's Distance (Wasserstein Distance): Earth Mover's Distance measures the minimum cost of
transforming one distribution into another. It is used in applications such as image comparison, where it
measures the minimum amount of work needed to transform one image's distribution of pixel values
into another's.

These are just a few examples of common and less common distance metrics used in machine learning.
The choice of distance metric depends on the characteristics of the data, the specific task at hand, and
the underlying assumptions of the model being used.

Let’s look at the code for some of these.

Euclidean Distance

euclidean_distance <- function(x, y) {

 sqrt(sum((x - y)^2))
}

Select the first two rows (cars) and all columns except the 'cyl' column
car1 <- mtcars[1, -2]
car2 <- mtcars[2, -2]

Calculate Euclidean distance
euclidean_distance(car1, car2)

Manhattan Distance

manhattan_distance <- function(x, y) {
 sum(abs(x - y))
}

Calculate Manhattan distance
manhattan_distance(car1, car2)

Minkowski’s distance

minkowski_distance <- function(x, y, p) {
 sum(abs(x - y)^p)^(1/p)
}

Calculate Minkowski distance with p = 3
minkowski_distance(car1, car2, p = 3)

Chebyshev’s distance

chebyshev_distance <- function(x, y) {
 max(abs(x - y))
}

Calculate Chebyshev distance
chebyshev_distance(car1, car2)

Cosine Similarity

cosine_similarity <- function(x, y) {
 sum(x * y) / (sqrt(sum(x^2)) * sqrt(sum(y^2)))
}

Calculate Cosine Similarity
cosine_similarity(car1, car2)

Mahalanobis Distance

Load the dataset
data("mtcars")

Select the first two rows (cars) and all columns except the 'cyl' column
car1 <- as.numeric(mtcars[1, -2])
car2 <- as.numeric(mtcars[2, -2])

Define Mahalanobis distance function
mahalanobis_distance <- function(x, y, cov_matrix) {
 diff <- as.matrix(x - y, ncol=1) # Convert the difference to a column matrix
 sqrt(t(diff) %*% solve(cov_matrix) %*% diff)
}

Calculate the covariance matrix of the entire dataset (excluding 'cyl')
cov_matrix <- cov(mtcars[, -2])

Calculate Mahalanobis distance
mahalanobis_distance(car1, car2, cov_matrix)

Jaccard Distance

jaccard_distance <- function(x, y) {
 intersection <- sum(x & y)
 union <- sum(x | y)
 1 - (intersection / union)

}

Create binary vectors based on mpg (above/below threshold)
binary_car1 <- as.numeric(mtcars[1,] > median(mtcars$mpg))
binary_car2 <- as.numeric(mtcars[2,] > median(mtcars$mpg))

Calculate Jaccard distance
jaccard_distance(binary_car1, binary_car2)

Hamming Distance

hamming_distance <- function(x, y) {
 sum(x != y)
}

We can apply one of the metrics to the entire dataset:

Load the dataset
data("mtcars")

Select only the numeric columns (excluding categorical or identifiers if necessary)
Here we use the entire dataset without 'cyl' for example purposes.
mtcars_numeric <- mtcars[, -2]

Define Euclidean distance function
euclidean_distance <- function(x, y) {
 sqrt(sum((x - y)^2))
}

Initialize an empty matrix to store the distances
num_rows <- nrow(mtcars_numeric)
distance_matrix <- matrix(NA, nrow = num_rows, ncol = num_rows)

Calculate Euclidean distance for each pair of rows (cars)
for (i in 1:num_rows) {
 for (j in 1:num_rows) {
 distance_matrix[i, j] <- euclidean_distance(mtcars_numeric[i,], mtcars_numeric[j,])
 }
}

Optionally add row and column names to the matrix for easier interpretation
rownames(distance_matrix) <- rownames(mtcars_numeric)

colnames(distance_matrix) <- rownames(mtcars_numeric)

View the distance matrix
print(distance_matrix)

Scaling Methods
We want to also look at scaling methods in data preprocessing, why they are used, and how to
implement them from scratch in R using the mtcars dataset. We'll cover the following scaling methods:

• Min-Max Scaling (Normalization)

• Z-Score Scaling (Standardization)

• Max Abs Scaling

• Robust Scaling

• Decimal Scaling

What is Scaling? Scaling is a preprocessing step in machine learning where we adjust the range or
distribution of features so they are comparable and suitable for algorithms sensitive to feature
magnitudes. This step is particularly important for distance-based models like KNN or SVM, where
feature magnitude can heavily influence the model.

Why Scale Data?

• Ensures that features contribute equally to the model.

• Improves convergence speed for gradient-based algorithms.

• Reduces the impact of units of measurement.

Min-Max Scaling (Normalization)

This scaling method transforms the data into the range [0,1].

Function to perform Min-Max Scaling
min_max_scaling <- function(x) {
 (x - min(x)) / (max(x) - min(x))
}

Apply to mtcars dataset
mtcars_min_max <- as.data.frame(lapply(mtcars, min_max_scaling))

View scaled data
head(mtcars_min_max)

Z-Score Scaling (Standardization)

𝑧 =
(𝑥 − 𝑥̅)

𝑠

This is slightly misnamed, since we are using sample means and standard deviations, not populations
means (so this is really t-score scaling), but if you know the mean and standard deviations of the
population, you can use that.

Function to perform Z-Score Scaling
z_score_scaling <- function(x) {
 (x - mean(x)) / sd(x)
}

Apply to mtcars dataset
mtcars_z_scaled <- as.data.frame(lapply(mtcars, z_score_scaling))

View scaled data
head(mtcars_z_scaled)

Max Abs Scaling

Function to perform Max Abs Scaling
max_abs_scaling <- function(x) {
 x / max(abs(x))
}

Apply to mtcars dataset
mtcars_max_abs <- as.data.frame(lapply(mtcars, max_abs_scaling))

View scaled data
head(mtcars_max_abs)

Robust Scaling

Function to perform Robust Scaling
robust_scaling <- function(x) {
 (x - median(x)) / IQR(x)
}

Apply to mtcars dataset
mtcars_robust_scaled <- as.data.frame(lapply(mtcars, robust_scaling))

View scaled data
head(mtcars_robust_scaled)

Decimal Scaling

Function to perform Decimal Scaling
decimal_scaling <- function(x) {

 j <- ceiling(log10(max(abs(x))))
 x / 10^j
}

Apply to mtcars dataset
mtcars_decimal_scaled <- as.data.frame(lapply(mtcars, decimal_scaling))

View scaled data
head(mtcars_decimal_scaled)

Practical Considerations

When to Use Each Method:

Min-Max Scaling: Use when features are on different scales, but you want to preserve the
relationships between values.

Z-Score Scaling: Use when data follows a normal distribution and you want to standardize it.

Max Abs Scaling: Use when data contains both positive and negative values.

Robust Scaling: Use when your data contains outliers.

Decimal Scaling: Use when you need a quick normalization without worrying about the
distribution of values.

Impact on Machine Learning Models:

• Distance-based Models (e.g., KNN): Scaling is crucial as these models are sensitive to
feature magnitudes.

• Gradient-based Models (e.g., Logistic Regression, Neural Networks): Scaling improves
the convergence of optimization algorithms.

Resources:

1. https://numerics.mathdotnet.com/Distance
2. https://medium.com/@eskandar.sahel/exploring-common-distance-measures-for-machine-

learning-and-data-science-a-comparative-analysis-ea0216c93ba3
3. https://datatricks.co.uk/feature-scaling-in-r-five-simple-methods

https://numerics.mathdotnet.com/Distance
https://medium.com/@eskandar.sahel/exploring-common-distance-measures-for-machine-learning-and-data-science-a-comparative-analysis-ea0216c93ba3
https://medium.com/@eskandar.sahel/exploring-common-distance-measures-for-machine-learning-and-data-science-a-comparative-analysis-ea0216c93ba3
https://datatricks.co.uk/feature-scaling-in-r-five-simple-methods

