
Lecture 7 
 
Penalty Functions 
 
Penalized regression techniques are used when traditional linear regression models face challenges like 
multicollinearity or overfitting. By introducing penalty functions, these models balance fitting the data 
well and maintaining model simplicity. In this lecture, we’ll examine penalty functions, their pros and 
cons, and other issues. We’ll concern ourselves with optimization in the next lecture. 
 
In traditional penalized regression, we have an objective: minimize the loss function (typically sum of 
squared errors) while introducing a penalty for large coefficients. 
 
Common Types of Penalties: 

• L1 (LASSO): Adds an absolute value penalty. 

• L2 (Ridge): Adds a squared value penalty. 

• Elastic Net: A combination of L1 and L2 penalties. 
 
Penalty functions can also be used in spline regression. 
 
Formulation of Penalties 
Ridge Regression (L2 Penalty): 
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Effect: Shrinks coefficients towards zero but does not set any coefficient exactly to zero. 
 
LASSO Regression (L1 Penalty) 

Objective: Minimize ∑
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Effect: Can shrink some coefficients to zero, effectively performing variable selection. 
 
Elastic Net 

Objective: Combine the strengths of Ridge and LASSO by minimizing ∑
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Effect: Handles cases where predictors are highly correlated and can perform both shrinkage and 
variable selection. 

 
Splines in Regression 

Use: Introduce flexibility in regression models by using piecewise polynomials. 
Penalized Splines: Control smoothness by penalizing the roughness of the spline curve 

 
Implementing Ridge Regression 

ridge_regression <- function(X, y, lambda) { 
  # Adding intercept term 
  X <- cbind(1, X) 



   
  # Identity matrix 
  I <- diag(ncol(X)) 
  I[1, 1] <- 0  # Don't penalize the intercept 
   
  # Normal equation with ridge penalty 
  beta_hat <- solve(t(X) %*% X + lambda * I) %*% t(X) %*% y 
  return(beta_hat) 
} 
 
# Example usage with mtcars dataset 
X <- as.matrix(mtcars[, c("wt", "hp", "qsec")]) 
y <- mtcars$mpg 
lambda <- 1 
 
ridge_coefficients <- ridge_regression(X, y, lambda) 
print(ridge_coefficients) 

 
In this example, we’ve specified a 𝜆 scaling value, and have used matrix multiplication to solve the 
system rather than to use an optimization strategy. 
 
Implementing LASSO regression 

lasso_regression <- function(X, y, lambda, max_iter = 1000, tol = 1e-4) { 
  n <- nrow(X) 
  p <- ncol(X) 
  beta <- rep(0, p) 
  for (iter in 1:max_iter) { 
    beta_old <- beta 
    for (j in 1:p) { 
      X_j <- X[, j] 
      residual <- y - X %*% beta + beta[j] * X_j 
      rho <- sum(X_j * residual) 
      if (rho < -lambda / 2) { 
        beta[j] <- (rho + lambda / 2) / sum(X_j^2) 
      } else if (rho > lambda / 2) { 
        beta[j] <- (rho - lambda / 2) / sum(X_j^2) 
      } else { 
        beta[j] <- 0 
      } 
    } 
    if (sum(abs(beta - beta_old)) < tol) break 
  } 
  return(beta) 
} 
 
# Example usage with mtcars dataset 
X <- as.matrix(mtcars[, c("wt", "hp", "qsec")]) 
X <- scale(X)  # Standardize predictors 



y <- scale(mtcars$mpg) 
lambda <- 0.1 
 
lasso_coefficients <- lasso_regression(X, y, lambda) 
print(lasso_coefficients) 

 
In this case, we aren’t able to use a direct matrix approach to the minimization, so an optimization 
algorithm is required. This means that LASSO regression is computationally more intensive and will take 
longer to implement, especially if there are a lot of variables, than will Ridge regression. 
 
Elastic Net 

elastic_net <- function(X, y, alpha, lambda, max_iter = 1000, tol = 1e-4) { 
  # Decompose the elastic net into a combination of ridge and lasso 
  ridge_part <- (1 - alpha) * ridge_regression(X, y, lambda) 
  lasso_part <- alpha * lasso_regression(X, y, lambda, max_iter, tol) 
   
  # Combine the results 
  beta_hat <- ridge_part + lasso_part 
  return(beta_hat) 
} 
 
# Example usage with mtcars dataset 
alpha <- 0.5  # 50% ridge, 50% lasso 
elastic_net_coefficients <- elastic_net(X, y, alpha, lambda) 
print(elastic_net_coefficients) 

 

 Pros Cons 

Ridge Regression Useful when dealing with 
multicollinearity. 
 
Does not eliminate variables (all 
coefficients are shrunken but non-zero). 

Cannot perform variable selection 
(all predictors stay in the model). 
 
Harder to interpret when many 
variables are included. 

LASSO Regression Performs variable selection (can shrink 
some coefficients to zero). 
 
Leads to simpler and interpretable 
models. 

Can be unstable when predictors 
are highly correlated. 
 
Not as effective in situations where 
multicollinearity is present. 

Elastic Net Combines the strengths of Ridge and 
LASSO. 
 
Performs well with correlated predictors. 

Introduces an additional tuning 
parameter (alpha). 

 
Tuning Parameters 

Lambda: Controls the strength of the penalty. 
o Higher lambda leads to more regularization (larger penalty). 
o Lower lambda leads to less regularization (smaller penalty). 

Alpha (for Elastic Net): Balances between L1 and L2 penalties. 
 



Feature Scaling 
o Importance: Penalized regression assumes predictors are on the same scale. 
o Solution: Always standardize/normalize predictors before applying penalized regression. 

 
Penalized regression is one of the regression models where scaling makes a big difference in 
performance, a behaviour we usually expect from classification models. 
 

# Example: Standardizing predictors 
X <- scale(mtcars[, c("wt", "hp", "qsec")]) 

 
Note that in this example, the code uses the built-in scale function. This is something that you can 
customize, however, it’s not the focus of this section. If we were to introduce validation with test and 
training sets, how would the scaling function lead to potential problems? 
 
Spline Regression 
Spline regression is a flexible method used to model non-linear relationships by dividing the data into 
segments and fitting simple models (typically polynomials) within each segment. To avoid overfitting and 
to ensure smooth transitions between segments, penalty functions are often incorporated into spline 
regression models. 
 
Understanding Splines: 

• Splines are piecewise polynomials used to model data, with each piece called a "knot." 
• Knots are the points where the data is divided. More knots mean more flexibility but also a 

higher risk of overfitting. 3-5 knots is common, but the exact number, and how they are selected, 
can depend on the number of observations. 

• Cubic splines are a common type, using cubic polynomials between each pair of knots, however, 
lower degrees are possible, including linear segments (cubics are preferred because they are 
smoother and create fewer continuity issues at the join points). 

 
Challenges with Splines: 
Without penalties, splines can fit the training data too closely, leading to overfitting. To control the 
smoothness and complexity of the spline, penalties are introduced. 
 
Penalized Spline Regression 
In penalized spline regression, a penalty is added to the fitting criterion (often the residual sum of 
squares) to discourage the spline from being too "wiggly." 
 
Spline Regression Objective Function: 
For a given set of data points (𝑥𝑖, 𝑦𝑖), the objective in spline regression is to minimize the following: 

Minimize ∑
1

𝑛
(𝑦𝑖 − 𝑓(𝑥𝑖))

2𝑛
𝑖=1 + 𝜆 ∫(𝑓′′(𝑥))

2
𝑑𝑥 

• 𝑓(𝑥) is the spline function. 
• The first term is the residual sum of squares, measuring the fit of the model to the data. 
• The second term is a penalty on the roughness of the spline (i.e., the integral of the squared 

second derivative of 𝑓(𝑥). 
• 𝜆 is the smoothing parameter that controls the trade-off between fitting the data and the 

smoothness of the spline. A larger 𝜆 results in a smoother spline. 
 



Penalty Function: 

The penalty function 𝜆 ∫(𝑓′′(𝑥))
2

𝑑𝑥 measures the roughness of the spline. A higher value indicates a 

more wiggly or complex spline. The goal is to balance fitting the data well and keeping the spline 
smooth. This balance is controlled by the smoothing parameter 𝜆. 
 

# Load required libraries 
library(splines) 
 
# Create a function for penalized spline regression 
penalized_spline <- function(x, y, lambda) { 
  # Create B-spline basis 
  spline_basis <- bs(x, degree = 3, df = 10) # cubic spline with 10 degrees of freedom 
   
  # Set up the penalty matrix (penalize the second derivative) 
  penalty_matrix <- diff(diag(ncol(spline_basis)), differences = 2) 
   
  # Estimate the coefficients using penalized least squares 
  beta <- solve(t(spline_basis) %*% spline_basis + lambda * t(penalty_matrix) %*% 
penalty_matrix) %*% t(spline_basis) %*% y 
   
  # Return the fitted values 
  fitted_values <- spline_basis %*% beta 
  return(list(fitted_values = fitted_values, beta = beta)) 
} 
 
# Apply the penalized spline to the mtcars dataset 
x <- mtcars$wt 
y <- mtcars$mpg 
lambda <- 1 
 
result <- penalized_spline(x, y, lambda) 
 
# Plot the results 
plot(x, y, main = "Penalized Spline Regression", xlab = "Weight (wt)", ylab = "Miles Per Gallon 
(mpg)") 
lines(sort(x), result$fitted_values[order(x)], col = "red", lwd = 2) 

 

 
The example uses 𝜆 = 1, but let’s also look at what happens if we increase or decrease 𝜆. 
 



If 𝜆 = 10, we get: 

 
 
If 𝜆 = 0.1, we get: 

 
You can see that the difference between 1 and 10 here is relatively small in terms of the smoothness, but 
when we reduce 𝜆, we can see that we do get more wobbliness.  As with other models with 
hyperparameters, experimentation may be required to select the best value. 
 
Creating the B-Spline Basis: 

The bs() function is used to create a B-spline basis matrix with cubic splines. You can control 
the degrees of freedom (df) to manage the flexibility of the spline. 

 
Penalty Matrix: 

A penalty matrix is created to penalize the second derivative of the spline. The diff() function 

is used to compute differences, effectively creating the penalty for the roughness of the spline. 
 
Estimation Using Penalized Least Squares: 

The coefficients 𝛽 are estimated by solving a penalized least squares problem, which balances 
fitting the data and penalizing the roughness. 

 
Plotting the Results: 

The fitted spline is plotted against the original data to visualize the effect of the penalty. The 
fitted spline values can be further used to calculate the residuals and any metrics to be applied. 

 
Scaling Issues: 

• Tuning 𝜆: The choice of 𝜆 can be customized based on the dataset. Common methods include 
cross-validation. 

• Feature Scaling: As with other penalized regression techniques, predictors should be scaled 
before applying splines to avoid issues with different scales affecting the penalty. (This is not 
generally an issue when there is only one variable, but will matter if there are two or more 



variables. Consider what happens if you cube an already large number and consider checking the 
consequences of rescaling or shifting variables.) 
 

Pros and Cons of Splines: 

 Pros Cons 

Splines (B-splines) Flexibility: Splines can capture 
non-linear relationships in data. 
 
Control over Smoothness: The 
penalty function allows control 
over the smoothness of the 
fitted spline. 
 
Interpretability: Depending on 
the choice of knots and 
smoothing, splines can offer a 
balance between flexibility and 
interpretability. 
 

Choice of Smoothing Parameter: 
Selecting the appropriate 𝜆 is 
critical and often requires cross-
validation or other tuning 
methods. 
 
Computational Complexity: As 
the number of knots increases, 
the computation becomes more 
intensive. 
 
Risk of Overfitting: Without 
appropriate penalization, 
splines can overfit the data, 
especially with a large number 
of knots. 
 

 
Splines can be extended to handle more than one variable. When splines are applied to multiple 
variables, they are typically referred to as multivariate splines or tensor product splines. These splines 
are used to model complex relationships involving two or more predictors and allow the model to 
capture interactions between these variables. 
 
Multivariate Splines: 
When working with multiple variables, splines can be extended in the following ways: 
 

• Additive Splines: Each predictor is modeled with its own univariate spline, and the results are 
summed to create the final model. This is a common approach used in generalized additive 
models (GAMs). 

• Tensor Product Splines: These are used when you want to model interactions between multiple 
predictors. Tensor product splines involve taking the Cartesian product of the basis functions for 
each predictor, creating a more flexible model that can capture interactions. 

 
Let’s look at some examples:  
Multivariate Splines in R (Additive Splines) 
Let's look at an example where we apply additive splines to model the relationship between mpg and 
two predictors (wt and hp) from the mtcars dataset. 
 

# Load required library 
library(splines) 
 
# Generate B-spline basis functions for two variables 
spline_basis_wt <- bs(mtcars$wt, degree = 3, df = 5)  # Spline for weight 



spline_basis_hp <- bs(mtcars$hp, degree = 3, df = 5)  # Spline for horsepower 
 
# Combine the spline basis functions into a design matrix 
design_matrix <- cbind(spline_basis_wt, spline_basis_hp) 
 
# Fit a linear model using the design matrix 
model <- lm(mtcars$mpg ~ design_matrix) 
 
# Summarize the model 
summary(model) 
 
# Generate predictions and plot 
predicted_mpg <- predict(model) 
 
# Plot the original data and fitted values 
plot(mtcars$wt, mtcars$mpg, pch = 19, col = 'blue', xlab = 'Weight (wt)', ylab = 'Miles Per Gallon 
(mpg)') 
points(mtcars$wt, predicted_mpg, col = 'red', pch = 19) 

 

 
 

Call: 
lm(formula = mtcars$mpg ~ design_matrix) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-2.8453 -1.2367  0.0648  0.5010  4.1152  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)     33.6587     2.0706  16.256 2.26e-13 *** 
design_matrix1  -9.8289     4.9036  -2.004  0.05809 .   
design_matrix2  -8.6508     2.8536  -3.032  0.00635 **  
design_matrix3 -13.5793     3.6646  -3.706  0.00131 **  
design_matrix4 -14.8633     7.7267  -1.924  0.06806 .   
design_matrix5 -16.9546     2.9589  -5.730 1.09e-05 *** 
design_matrix1   7.5475     4.9986   1.510  0.14597     
design_matrix2  -8.4160     2.5922  -3.247  0.00386 **  
design_matrix3   0.2423     4.9980   0.048  0.96179     
design_matrix4 -11.9081     3.9036  -3.051  0.00608 **  
design_matrix5  -6.5238     3.1612  -2.064  0.05162 .   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 2.078 on 21 degrees of freedom 
Multiple R-squared:  0.9195, Adjusted R-squared:  0.8811  
F-statistic: 23.98 on 10 and 21 DF,  p-value: 2.813e-09 



 
Basis Functions for Each Predictor: 
The bs() function is used to create B-spline basis functions for wt and hp. The degree parameter 
controls the degree of the splines (e.g., cubic splines with degree = 3). The df parameter controls the 
degrees of freedom, which effectively controls the number of knots. 
 
Combining Basis Functions: 
The basis functions for wt and hp are combined into a single design matrix. 
 
Fitting the Model: 
A linear model is fitted using the design matrix. This model effectively uses additive splines for both 
predictors. 
 
Plotting the Results: 
The fitted values are plotted against the original data to visualize the model's fit. 
 
Tensor Product Splines: 
For modeling interactions between multiple variables, tensor product splines are more appropriate. In R, 
the mgcv package provides a straightforward way to fit tensor product splines through the gam() 
function. 
 

# Load mgcv library for generalized additive models (GAMs) 
library(mgcv) 
 
# Fit a GAM with tensor product splines for wt and hp 
gam_model <- gam(mpg ~ te(wt, hp), data = mtcars) 
 
# Summarize the model 
summary(gam_model) 
 
# Plot the smooth interaction between wt and hp 
plot(gam_model, scheme = 1) 

 

 
 



Family: gaussian  
Link function: identity  
 
Formula: 
mpg ~ te(wt, hp) 
 
Parametric coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  20.0906     0.3275   61.34   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
            edf Ref.df     F p-value     
te(wt,hp) 10.91  12.74 23.83  <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.905   Deviance explained = 93.9% 
GCV = 5.4686  Scale est. = 3.433     n = 32 

 
Tensor Product Spline: 
The te() function in gam() is used to specify a tensor product spline, which models the interaction 
between wt and hp. 

 
Plotting: 
The plot() function allows you to visualize the smooth interaction between the two variables. 

 
Splines are a versatile tool in regression modeling, and several different types of splines can be used 
depending on the specific needs of the modeling task. While B-splines are one of the most commonly 
used, other types of splines, such as smoothing splines, I-splines, N-splines, and others, are also available 
and can be used under different circumstances. Here’s an overview of some of these types and their 
usage in regression modeling: 
 
Smoothing Splines 
Overview: Smoothing splines are a type of spline regression that automatically selects the number and 
placement of knots based on a smoothing parameter, often chosen by cross-validation. Instead of 
specifying knots manually, the model tries to balance fitting the data closely and maintaining 
smoothness. 
 
Usage in Regression: 
Purpose: Smoothing splines are used when you want a smooth curve that fits the data, but without 
overfitting. 
How They Work: They minimize a loss function that includes both the residual sum of squares and a 
penalty for roughness (similar to penalized splines). 

Formula: Minimize ∑
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In R: You can fit smoothing splines using the smooth.spline() function in R. 
Limitations: One drawback is that it assumes a single smoothing parameter, which may not be ideal for 
all sections of the data. 
 

model <- smooth.spline(mtcars$wt, mtcars$mpg) 
plot(mtcars$wt, mtcars$mpg, main="Smoothing Spline Example") 



lines(model, col="red") 
 

 
I-Splines (Integral Splines) 
Overview: I-splines are a form of non-negative splines that are used primarily in the context of 
monotonic regression, where you want the regression function to be increasing or decreasing. 
 
Usage in Regression: 
Purpose: Useful in situations where prior knowledge dictates that the relationship between predictors 
and the response should be monotonic. 
How They Work: I-splines are integrated from M-splines, which are piecewise polynomial functions. The 
integration process ensures that I-splines are non-decreasing. 
Limitations: Not widely used in general-purpose regression because they impose monotonicity 
constraints, which may not be suitable for many applications. 
In R: I-splines are less commonly implemented in standard packages, but custom implementations or 
extensions might be available in more specialized libraries. 
 
N-Splines (Natural Splines) 
Overview: Natural splines are a type of spline where the endpoints (knots at the boundaries of the data) 
are forced to be linear, which reduces the risk of overfitting at the extremes. 
 
Usage in Regression: 
Purpose: Used when you want a smoother and more interpretable spline model, especially at the 
boundaries of your data. 
How They Work: N-splines impose a linear constraint on the endpoints of the spline, ensuring that the 
function does not exhibit erratic behavior near the boundaries. 
In R: Natural splines can be implemented using the ns() function from the splines package. 
Limitations: While N-splines offer more stability at the boundaries, they might not capture extreme non-
linearity as effectively as unconstrained splines. 

 
library(splines) 
model <- lm(mpg ~ ns(wt, df=4), data=mtcars) 
plot(mtcars$wt, mtcars$mpg) 
lines(mtcars$wt, predict(model), col="red") 



 
Note: you may want to sort your data in your dataframe in terms of the input variable. 
 
Other Splines (e.g., P-splines, T-splines) 
P-Splines (Penalized Splines): P-splines are similar to smoothing splines, but they explicitly incorporate a 
penalty function for the roughness of the spline. They allow for more flexibility in controlling smoothness 
by using a combination of B-splines and a penalty term. These are often used in generalized additive 
models (GAMs) to allow for more complex, yet smooth, relationships. 
 
T-Splines (Tensor Splines): Tensor product splines are used when dealing with multidimensional data, 
particularly when interactions between variables need to be modeled smoothly. They are often used in 
spatial data analysis or when modeling surfaces. 
 
Comparison and Limitations 

• B-Splines are versatile and commonly used, particularly in their unpenalized form in standard 
regression or with penalties in GAMs. 

• Smoothing Splines are popular for their simplicity in automatically balancing fit and smoothness 
but might be limited in very high-dimensional or highly non-linear contexts. 

• I-Splines are specialized for monotonic regression and are less commonly used outside of this 
context. 

• N-Splines are useful for ensuring more stable behavior at the boundaries of the data, making 
them preferable in certain regression tasks where boundary behavior is critical. 

 
Different types of splines serve different purposes in regression modeling. While some, like B-splines and 
smoothing splines, are widely used in general-purpose regression, others like I-splines and N-splines 
serve more specialized roles. Understanding the specific properties and use cases of each type of spline 
is important for effectively applying them to real-world data modeling tasks. 
 
 
Resources: 

1. https://faculty.washington.edu/yenchic/18W_425/Lec11_Reg03.pdf 
2. https://www.cs.cmu.edu/afs/cs/academic/class/15462-s10/www/lec-slides/lec06.pdf 

 

https://faculty.washington.edu/yenchic/18W_425/Lec11_Reg03.pdf
https://www.cs.cmu.edu/afs/cs/academic/class/15462-s10/www/lec-slides/lec06.pdf

