
Lecture 3 
 
Optimization Algorithms 
 
In machine learning, we employ a number of optimization algorithms to ensure that parameters for our 
models converge to optimal values by minimizing (or maximizing) some objective function. For example, 
in regression, we typically want to minimize the sum of square errors. 
 
What is Optimization? 
Optimization is the process of finding the best parameters for a model to minimize (or maximize) an 
objective function. In machine learning, the objective function often measures error (like Mean Squared 
Error in regression) that we want to minimize. 
 
Why is Optimization Important? 
Determines the performance of the machine learning model. Efficient optimization leads to faster 
convergence and better results. 
 
Commonly Used Optimization Algorithms: 

• Gradient Descent (and its variants) 

• Stochastic Gradient Descent (SGD) 

• Mini-Batch Gradient Descent 

• Newton's Method 

• Adam Optimizer 
 
Gradient Descent 
General framework:  

 
Example for ordinary least squares (single variable) linear regression: 

 
 
Gradient Descent is an iterative optimization algorithm used to find the minimum of a function. It 
updates parameters by moving in the opposite direction of the gradient of the objective function. The 
gradient is a concept from multivariable calculus that is a vector of the partial derivatives of the objective 
function to be optimized. 
 

𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 − 𝛼 × 𝛻𝐽(𝜃) 
Where: 

• 𝜃 are the parameters, 



• 𝛼 is the learning rate, 

• 𝛻𝐽(𝜃) is the gradient of the objective function. 

# Objective Function: Mean Squared Error 
mse <- function(y, y_pred) { 
  mean((y - y_pred)^2) 
} 
 
# Gradient Descent Function 
gradient_descent <- function(x, y, learning_rate = 0.01, n_iter = 1000) { 
  m <- length(y) 
  theta <- 0  # Start with an initial value of 0 for theta 
   
  for (i in 1:n_iter) { 
    y_pred <- theta * x 
    gradient <- -(2/m) * sum(x * (y - y_pred)) 
    theta <- theta - learning_rate * gradient 
  } 
   
  return(theta) 
} 
 
# Example data 
x <- 1:10 
y <- 2 * x + 1  # Linear relationship with some noise 
 
# Apply Gradient Descent 
theta_optimal <- gradient_descent(x, y) 
print(theta_optimal) 

 
The learning rate 𝛼 controls the size of steps. If it's too large, the algorithm might overshoot; if too small, 
convergence will be slow. Depending on the problem, you may need to adjust 𝛼 manually to obtain the 
best results. 
 
Stochastic Gradient Descent 
Instead of using the entire dataset to compute the gradient, SGD uses only one data point at a time, 
which speeds up computation but introduces noise into the optimization process. 
 

 
𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 − 𝛼 × 𝛻𝐽(𝜃; 𝑥𝑖 , 𝑦𝑖) 

Where (𝑥𝑖 , 𝑦𝑖) is a single data point. 
 



# Stochastic Gradient Descent Function 
stochastic_gradient_descent <- function(x, y, learning_rate = 0.01, n_iter = 100) { 
  m <- length(y) 
  theta <- 0  # Start with an initial value of 0 for theta 
   
  for (i in 1:n_iter) { 
    for (j in 1:m) { 
      y_pred <- theta * x[j] 
      gradient <- -(2/m) * x[j] * (y[j] - y_pred) 
      theta <- theta - learning_rate * gradient 
    } 
  } 
   
  return(theta) 
} 
 
# Apply Stochastic Gradient Descent 
theta_sgd <- stochastic_gradient_descent(x, y) 
print(theta_sgd) 

 
SGD is faster but more volatile than batch Gradient Descent. It might take more iterations to converge to 
the minimum. You may be able to reduce the volatility by including a decaying learning rate (one that 
gets smaller as the function iterates). 
 
Mini-Batch Gradient Descent 
Combines the advantages of both Batch Gradient Descent and Stochastic Gradient Descent by using a 
small batch of data points in each iteration. 
 

# Mini-Batch Gradient Descent Function 
mini_batch_gradient_descent <- function(x, y, learning_rate = 0.01, n_iter = 100, batch_size = 3) 
{ 
  m <- length(y) 
  theta <- 0  # Start with an initial value of 0 for theta 
   
  for (i in 1:n_iter) { 
    indices <- sample(1:m, batch_size) 
    x_batch <- x[indices] 
    y_batch <- y[indices] 
     
    y_pred <- theta * x_batch 
    gradient <- -(2/batch_size) * sum(x_batch * (y_batch - y_pred)) 
    theta <- theta - learning_rate * gradient 
  } 
   
  return(theta) 
} 
 
# Apply Mini-Batch Gradient Descent 



theta_mini_batch <- mini_batch_gradient_descent(x, y) 
print(theta_mini_batch) 

 
Newton’s Method 
This is a method that students learn in Calculus to find the zero of a function (or an intersection). Since 
optimization involves finding the zero of the derivative(s) of an objective function, we can use this 
method here as well, with some caveats (Newton’s doesn’t always converge, for example). Since we are 
finding the zero of the derivative, we’ll need the derivative of that. In multivariable calculus, since the 
gradient is a vector, the second derivative is a matrix called the Hessian. 
 
An optimization technique that uses the second derivative (Hessian) of the objective function to adjust 
parameters. Converges faster but is computationally expensive. 
 

𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 −
𝐽′(𝜃)

𝐽′′(𝜃)
 

 
# Newton's Method for a quadratic function 
newtons_method <- function(x, y, n_iter = 10) { 
  theta <- 0  # Initial guess 
  for (i in 1:n_iter) { 
    grad <- -2 * sum(x * (y - theta * x)) 
    hessian <- 2 * sum(x^2) 
    theta <- theta - grad / hessian 
  } 
  return(theta) 
} 
 
# Apply Newton's Method 
theta_newton <- newtons_method(x, y) 
print(theta_newton) 

 
Newton's Method converges quickly for convex functions, but the computation of the Hessian can be 
prohibitive in high dimensions. 
 
Adam Optimizer 
An advanced optimization algorithm that combines the benefits of AdaGrad and RMSProp. It adjusts the 
learning rate based on first and second moments of gradients. 
 

 
 



 
 

# Adam Optimizer (simplified version) 
adam_optimizer <- function(x, y, learning_rate = 0.01, beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8, 
n_iter = 1000) { 
  m <- length(y) 
  theta <- 0 
  m_t <- 0 
  v_t <- 0 
  for (t in 1:n_iter) { 
    y_pred <- theta * x 
    grad <- -(2/m) * sum(x * (y - y_pred)) 
     
    m_t <- beta1 * m_t + (1 - beta1) * grad 
    v_t <- beta2 * v_t + (1 - beta2) * grad^2 
     
    m_t_hat <- m_t / (1 - beta1^t) 
    v_t_hat <- v_t / (1 - beta2^t) 
     
    theta <- theta - learning_rate * m_t_hat / (sqrt(v_t_hat) + epsilon) 
  } 
   
  return(theta) 
} 
 
# Apply Adam Optimizer 
theta_adam <- adam_optimizer(x, y) 
print(theta_adam) 

 
Adam is widely used due to its adaptability and efficiency in handling noisy gradients. It’s especially 
popular in neural network models. 
 
Customizing Algorithms 
Different problems may require tweaking of optimization algorithms to improve performance. 
Customizing learning rates, batch sizes, or even hybridizing algorithms can yield better results. 
 



• Learning Rate Schedules: Implement a decaying learning rate to prevent overshooting as the 
algorithm converges. 

• Hybrid Approaches: Combine SGD with momentum or Adam with a decaying learning rate. 
 

# Custom Gradient Descent with a Decaying Learning Rate + check 
gradient_descent_decay <- function(x, y, initial_lr = 0.1, decay = 0.001, n_iter = 1000) { 
  m <- length(y) 
  theta <- 0  # Start with an initial value of 0 for theta 
   
  for (i in 1:n_iter) { 
    y_pred <- theta * x 
    gradient <- -(2/m) * sum(x * (y - y_pred)) 
     
    # Update learning rate 
    learning_rate <- initial_lr / (1 + decay * i) 
     
    # Update theta 
    theta <- theta - learning_rate * gradient 
     
    # Print theta to debug if it goes to NaN 
    if (is.nan(theta)) { 
      print(paste("Theta became NaN at iteration:", i)) 
      break 
    } 
  } 
   
  return(theta) 
} 
 
# Example data 
x <- 1:10 
y <- 2 * x + 1  # Linear relationship 
 
# Apply Custom Gradient Descent 
theta_custom <- gradient_descent_decay(x, y, initial_lr = 0.01, decay = 0.0001) 
print(theta_custom) 

 
If you run this code using the default learning rate and decay rate, this example will go to NaN around 
420 iterations in. If this happens in general, adjust the learning and/or decay rate until the NaN stops 
happening. 
 
Let’s look at some more complex examples with multivariable regression. 
 

data(mtcars) 
mtcars_data <- mtcars[, c("mpg", "disp", "hp", "wt", "qsec", "drat")]  # Selecting 5 variables + 
mpg 
 
# Normalizing the data for better convergence 



normalize <- function(x) { 
  return((x - mean(x)) / sd(x)) 
} 
 
mtcars_data <- as.data.frame(lapply(mtcars_data, normalize)) 
 
# Separate predictors and target 
x <- as.matrix(mtcars_data[, -1]) 
y <- mtcars_data$mpg 
 
# Add a column of ones for the intercept 
x <- cbind(1, x) 

 
This last step here will get explained more when we discuss the normal equation next week. 
 

gradient_descent <- function(x, y, learning_rate = 0.01, n_iter = 1000) { 
  m <- nrow(x) 
  theta <- rep(0, ncol(x))  # Initialize theta 
   
  for (i in 1:n_iter) { 
    y_pred <- x %*% theta 
    gradient <- -(2/m) * t(x) %*% (y - y_pred) 
    theta <- theta - learning_rate * gradient 
  } 
   
  return(theta) 
} 
 
theta_gd <- gradient_descent(x, y) 
print(theta_gd) 

 
stochastic_gradient_descent <- function(x, y, learning_rate = 0.01, n_iter = 100) { 
  m <- nrow(x) 
  theta <- rep(0, ncol(x))  # Initialize theta 
   
  for (i in 1:n_iter) { 
    for (j in 1:m) { 
      idx <- sample(1:m, 1) 
      x_i <- x[idx, , drop = FALSE] 
      y_i <- y[idx] 
       
      y_pred <- x_i %*% theta 
      gradient <- -(2) * t(x_i) %*% (y_i - y_pred) 
      theta <- theta - learning_rate * gradient 
    } 
  } 
   
  return(theta) 



} 
 
theta_sgd <- stochastic_gradient_descent(x, y) 
print(theta_sgd) 

 
mini_batch_gradient_descent <- function(x, y, learning_rate = 0.01, n_iter = 100, batch_size = 5) 
{ 
  m <- nrow(x) 
  theta <- rep(0, ncol(x))  # Initialize theta 
   
  for (i in 1:n_iter) { 
    indices <- sample(1:m, batch_size) 
    x_batch <- x[indices, , drop = FALSE] 
    y_batch <- y[indices] 
     
    y_pred <- x_batch %*% theta 
    gradient <- -(2/batch_size) * t(x_batch) %*% (y_batch - y_pred) 
    theta <- theta - learning_rate * gradient 
  } 
   
  return(theta) 
} 
 
theta_mbgd <- mini_batch_gradient_descent(x, y) 
print(theta_mbgd) 

 
newtons_method <- function(x, y, n_iter = 10) { 
  m <- nrow(x) 
  theta <- rep(0, ncol(x))  # Initialize theta 
   
  for (i in 1:n_iter) { 
    y_pred <- x %*% theta 
    gradient <- -(2/m) * t(x) %*% (y - y_pred) 
    hessian <- (2/m) * t(x) %*% x 
     
    theta <- theta - solve(hessian) %*% gradient 
  } 
   
  return(theta) 
} 
 
theta_newton <- newtons_method(x, y) 
print(theta_newton) 
 
adam_optimizer <- function(x, y, learning_rate = 0.01, beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8, 
n_iter = 1000) { 
  m <- nrow(x) 
  theta <- rep(0, ncol(x))  # Initialize theta 



  m_t <- rep(0, ncol(x)) 
  v_t <- rep(0, ncol(x)) 
   
  for (t in 1:n_iter) { 
    y_pred <- x %*% theta 
    gradient <- -(2/m) * t(x) %*% (y - y_pred) 
     
    m_t <- beta1 * m_t + (1 - beta1) * gradient 
    v_t <- beta2 * v_t + (1 - beta2) * (gradient^2) 
     
    m_t_hat <- m_t / (1 - beta1^t) 
    v_t_hat <- v_t / (1 - beta2^t) 
     
    theta <- theta - learning_rate * m_t_hat / (sqrt(v_t_hat) + epsilon) 
  } 
   
  return(theta) 
} 
 
theta_adam <- adam_optimizer(x, y) 
print(theta_adam) 

 
Comparison of Algorithms: 
Each algorithm has strengths and weaknesses. Gradient Descent is reliable but can be slow. SGD is faster 
but noisy. Mini-Batch offers a balance. Newton's method is fast but computationally expensive. Adam 
combines the best of several approaches but requires tuning. 
 
Convergence: 
You may notice that different algorithms produce slightly different coefficients due to the way they 
converge. This is especially true for algorithms like SGD and Adam that use randomness. 
 
Customization: 
You can tweak learning rates, batch sizes, and other parameters to optimize performance for your 
specific dataset. 
 
Error Handling: 
Numerical instability (e.g., NaN values) can occur if learning rates are too high or if the data isn't properly 
normalized. Normalization and regularization can help address this. 
 
Resources: 

1. https://towardsdatascience.com/understanding-optimization-algorithms-in-machine-learning-
edfdb4df766b 

2. https://vtantravahi.medium.com/math-behind-optimization-techniques-9c3b200d9cca 
3. https://www.linkedin.com/pulse/optimization-machine-learning-comprehensive-guide-using-

koraichi-onr3e/ 
4. https://www.kdnuggets.com/2018/05/optimization-using-r.html 
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