
Lecture 11 
 
Variable Selection in Multiple Regression 
 
Let’s review. 
 
Variable selection is a crucial step in multiple regression modeling, as it helps identify the most relevant 
predictors and improve model performance. Here are some common procedures for variable selection: 
 
Forward Selection 
Forward selection is a stepwise approach where predictors are added one by one to the model based on 
a specified criterion (e.g., AIC, BIC). It starts with no predictors and adds variables that improve the 
model’s performance the most. 
Example: 

1. Start with an empty model. 
2. Evaluate the addition of each predictor using a criterion (e.g., AIC). 
3. Add the predictor that most improves the model. 
4. Repeat until no significant improvement is observed. 

 
Backward Elimination 
Backward elimination starts with all candidate predictors in the model and iteratively removes the least 
significant ones. 
Example: 

1. Start with a model containing all predictors. 
2. Evaluate the removal of each predictor using a criterion (e.g., p-values). 
3. Remove the predictor with the least impact. 
4. Repeat until all remaining predictors are statistically significant. 

 
Stepwise Selection 
Stepwise selection combines forward and backward methods. It adds predictors as in forward selection 
and removes them as in backward elimination, aiming to find a balance. 
Example: 

1. Start with an empty model. 
2. Add predictors based on improvement criteria (e.g., p-values). 
3. After adding each predictor, remove any that no longer meet the criteria. 
4. Continue until no further improvements can be made. 

 
LASSO (Least Absolute Shrinkage and Selection Operator) 
LASSO regression applies a penalty to the size of the coefficients, effectively shrinking some coefficients 
to zero. This results in variable selection as only the predictors with non-zero coefficients are retained. 
Example: 

1. Fit a LASSO model with a chosen penalty parameter (λ). 
2. The penalty term encourages sparsity in the model coefficients. 
3. Variables with coefficients shrunk to zero are excluded from the model. 

 
Ridge Regression 



Ridge regression also applies a penalty to the coefficients, but it does not set coefficients to zero. 
Instead, it shrinks all coefficients towards zero, which can be useful for multicollinearity but does not 
perform variable selection by itself. 
Example: 

1. Fit a ridge regression model with a penalty parameter (λ). 
2. All predictors are included, but their coefficients are regularized. 

 
Elastic Net 
Elastic Net combines the penalties of LASSO and Ridge regression, allowing for both variable selection 
and coefficient shrinkage. 
Example: 

1. Fit an Elastic Net model with both L1 (LASSO) and L2 (Ridge) penalties. 
2. The model includes a mixing parameter to balance between LASSO and Ridge effects. 

 
Principal Component Analysis (PCA) 
PCA reduces dimensionality by transforming the predictors into orthogonal components. While not a 
selection method per se, it can be used to select a subset of principal components that explain a 
significant portion of the variance. 
Example: 

1. Perform PCA on the predictors. 
2. Select a subset of principal components that capture most of the variance. 
3. Use these components as predictors in the regression model. 

 
Best Subset Selection 
Best subset selection evaluates all possible combinations of predictors and selects the one that best 
meets a criterion (e.g., AIC, BIC). This method is computationally intensive but can be very effective. 
Example: 

1. Evaluate all possible models with different subsets of predictors. 
2. Choose the model that minimizes the chosen criterion. 

 
We’ve looked more closely at the penalty-based models. Now we want to look at the methods that are 
historically done manually (the stepwise approaches, forward and backward selection), and best subset 
regression.  Some of these methods are implemented by hand by checking statistical significance of the 
variables, while in R, they are sometimes implemented by checking other criteria, such as AIC and BIC. 
We’d like to implement them by any given criteria we’d prefer. So, let’s look at how they are coded. We’ll 
look at PCA in a later lecture. 
 
We’ll start with best subset selection since this one is prohibitively difficult to by hand unless you have 
only a handful of variables. 
 

# Load necessary packages 
library(MASS)  # For stepAIC if needed 
 
# Load the mtcars dataset 
data(mtcars) 
 
# Define the response variable and predictor variables 
response <- "mpg" 



predictors <- setdiff(names(mtcars), response) 
 
# Function to calculate Adjusted R-squared 
adj_r_squared <- function(model) { 
  r2 <- summary(model)$r.squared 
  n <- nrow(model$model) 
  p <- length(model$coefficients) - 1 
  adj_r2 <- 1 - (1 - r2) * (n - 1) / (n - p - 1) 
  return(adj_r2) 
} 
 
# Function to fit models for each subset of predictors and evaluate 
best_subset_selection <- function(data, response, predictors) { 
  best_model <- NULL 
  best_adj_r2 <- -Inf 
  best_subset <- NULL 
   
  # Generate all possible subsets of predictors 
  for (k in 1:length(predictors)) { 
    subsets <- combn(predictors, k, simplify = FALSE) 
     
    for (subset in subsets) { 
      formula <- as.formula(paste(response, "~", paste(subset, collapse = " + "))) 
      model <- lm(formula, data = data) 
       
      # Calculate Adjusted R-squared 
      current_adj_r2 <- adj_r_squared(model) 
       
      if (current_adj_r2 > best_adj_r2) { 
        best_adj_r2 <- current_adj_r2 
        best_model <- model 
        best_subset <- subset 
      } 
    } 
  } 
   
  return(list(model = best_model, subset = best_subset, adj_r2 = best_adj_r2)) 
} 
 
# Apply best subset selection 
result <- best_subset_selection(mtcars, response, predictors) 
 
# Print the results 
cat("Best Subset:\n") 
print(result$subset) 
cat("\nBest Model Summary:\n") 
print(summary(result$model)) 
cat("\nAdjusted R-squared:", result$adj_r2, "\n") 



 
Let’s now consider backward selection procedures. Normally, we eliminate variables according to their 
p-values until all coefficients are less than the specified threshold (usually 0.05). The code below will 
perform this process with some amendments: 1) it adds some additional regression metrics at the end, 
and 2) it does not test for elimination of the constant. This would be the last step necessary to do by 
hand if we wanted to. 
 

# Load necessary packages 
library(MASS)  # For stepAIC if needed 
 
# Load the mtcars dataset 
data(mtcars) 
 
# Define the response variable and predictor variables 
response <- "mpg" 
predictors <- setdiff(names(mtcars), response) 
 
# Function to fit the model and get summary statistics 
fit_model <- function(data, response, predictors) { 
  formula <- as.formula(paste(response, "~", paste(predictors, collapse = " + "))) 
  model <- lm(formula, data = data) 
  return(model) 
} 
 
# Function to get the highest p-value from model summary 
get_highest_pvalue <- function(model) { 
  summary(model)$coefficients[, "Pr(>|t|)"][-1]  # Exclude the intercept 
} 
 
# Function to perform backward selection 
backward_selection <- function(data, response, predictors, threshold = 0.05) { 
  current_predictors <- predictors 
  repeat { 
    # Fit the model with the current predictors 
    model <- fit_model(data, response, current_predictors) 
     
    # Get p-values of the predictors 
    pvalues <- get_highest_pvalue(model) 
     
    # Check if any p-value is greater than the threshold 
    max_pvalue <- max(pvalues, na.rm = TRUE) 
    if (max_pvalue <= threshold) { 
      break 
    } 
     
    # Find the predictor with the highest p-value 
    predictor_to_remove <- names(pvalues)[which.max(pvalues)] 
     



    # Remove this predictor from the current list 
    current_predictors <- setdiff(current_predictors, predictor_to_remove) 
  } 
   
  # Final model 
  final_model <- fit_model(data, response, current_predictors) 
  return(list(model = final_model, predictors = current_predictors)) 
} 
 
# Function to calculate regression metrics 
regression_metrics <- function(model) { 
  residuals <- model$residuals 
  fitted_values <- model$fitted.values 
  n <- length(residuals) 
  p <- length(model$coefficients) - 1 
   
  # Calculate metrics 
  sse <- sum(residuals^2)  # Sum of Squared Errors 
  sst <- sum((mtcars[[response]] - mean(mtcars[[response]]))^2)  # Total Sum of Squares 
  r_squared <- 1 - sse / sst  # R-squared 
  adj_r_squared <- 1 - (1 - r_squared) * (n - 1) / (n - p - 1)  # Adjusted R-squared 
  rmse <- sqrt(sse / n)  # Root Mean Squared Error 
  mape <- mean(abs(residuals / mtcars[[response]])) * 100  # Mean Absolute Percentage Error 
  aic <- AIC(model)  # Akaike Information Criterion 
  bic <- BIC(model)  # Bayesian Information Criterion 
   
  return(list( 
    R_squared = r_squared, 
    Adjusted_R_squared = adj_r_squared, 
    RMSE = rmse, 
    MAPE = mape, 
    AIC = aic, 
    BIC = bic 
  )) 
} 
 
# Apply backward selection 
result <- backward_selection(mtcars, response, predictors) 
 
# Print the results 
cat("Final Model Summary:\n") 
print(summary(result$model)) 
 
cat("\nSelected Predictors:\n") 
print(result$predictors) 
 
cat("\nRegression Metrics:\n") 
metrics <- regression_metrics(result$model) 



print(metrics) 
 
After backward selection, a common process is to change directions and now consider adding in non-
linear terms, such as interaction terms or higher-order polynomial terms.  Let’s look at how this could be 
implemented. 
 

# Load necessary libraries 
library(dplyr) 
 
# Define the initial model with variables selected through backward selection 
initial_vars <- c("wt", "qsec", "am") 
data <- mtcars 
 
# Start with the initial model 
model_formula <- as.formula(paste("mpg ~", paste(initial_vars, collapse = " + "))) 
current_model <- lm(model_formula, data = data) 
 
# Function to add polynomial and interaction terms 
add_polynomial_and_interaction_terms <- function(data, initial_vars, current_model) { 
  new_vars <- initial_vars 
  max_degree <- 2 
   
  # Consider adding polynomial terms 
  for (var in initial_vars) { 
    for (degree in 2:max_degree) { 
      new_term <- paste0("I(", var, "^", degree, ")") 
      model_formula <- as.formula(paste("mpg ~", paste(c(new_vars, new_term), collapse = " + "))) 
      new_model <- lm(model_formula, data = data) 
       
      # Check if the term is present in the coefficients 
      if (new_term %in% rownames(summary(new_model)$coefficients)) { 
        p_value <- summary(new_model)$coefficients[new_term, 4] 
         
        if (p_value < 0.05) { 
          new_vars <- c(new_vars, new_term) 
          current_model <- new_model 
        } 
      } 
    } 
  } 
   
  # Consider adding interaction terms 
  interaction_combinations <- combn(initial_vars, 2, simplify = FALSE) 
  for (interaction in interaction_combinations) { 
    new_term <- paste(interaction, collapse = ":") 
    model_formula <- as.formula(paste("mpg ~", paste(c(new_vars, new_term), collapse = " + "))) 
    new_model <- lm(model_formula, data = data) 
     



    # Check if the term is present in the coefficients 
    if (new_term %in% rownames(summary(new_model)$coefficients)) { 
      p_value <- summary(new_model)$coefficients[new_term, 4] 
       
      if (p_value < 0.05) { 
        new_vars <- c(new_vars, new_term) 
        current_model <- new_model 
      } 
    } 
  } 
   
  return(current_model) 
} 
 
# Apply the function to add polynomial and interaction terms 
final_model <- add_polynomial_and_interaction_terms(data, initial_vars, current_model) 
 
# Output the final model summary 
summary(final_model) 
 
# Calculate additional metrics 
rsq <- summary(final_model)$r.squared 
adj_rsq <- summary(final_model)$adj.r.squared 
aic_value <- AIC(final_model) 
bic_value <- BIC(final_model) 
rmse <- sqrt(mean(residuals(final_model)^2)) 
 
cat("R-squared: ", rsq, "\n") 
cat("Adjusted R-squared: ", adj_rsq, "\n") 
cat("AIC: ", aic_value, "\n") 
cat("BIC: ", bic_value, "\n") 
cat("RMSE: ", rmse, "\n") 

 
In this example, we run through various quadratic and degree-2 interaction terms to see if they can be 
added to the model. One thing this algorithm does not do is remove variables from the initial set. So, at 
the end of this algorithm, it added a quadratic term, but this makes another variable in the model have a 
p-value that is too large, but this version of the algorithm does not check that. This is an aspect of 
forward selection that can be quite complex. However, this algorithm does help in that you don’t have to 
test every possibility yourself, and can now do just a little clean-up at the end. An alternative, here, 
would be to add the combinations of variables to the input yourself, and run best subset selection on 
those options since the order terms get added in here will make a big difference. 
 
Sometimes the issue is not the number of variables, but the different kinds of model options that are 
available, with each having to be compared and tested separately. Let’s consider a function that will 
apply various linear and non-linear models to a one-variable input case, and then select the best model 
based on some selected regression metric. 
 

# Load necessary libraries 



library(mgcv)    # For GAMs and penalized splines 
library(splines) # For B-splines 
library(kernlab) # For Gaussian Process 
#loess model is in the stats package which is already loaded in standard R 
 
# Define a function to calculate MAPE 
mape <- function(actual, predicted) { 
  mean(abs((actual - predicted) / actual)) * 100 
} 
 
# Define a function to compare models 
compare_models <- function(data, response, predictor) { 
  # Extract response and predictor 
  y <- data[[response]] 
  x <- data[[predictor]] 
   
  # Prepare data 
  model_data <- data.frame(x = x, y = y) 
   
  # Linear model 
  linear_model <- lm(y ~ x, data = model_data) 
  linear_pred <- predict(linear_model, newdata = model_data) 
  linear_mape <- mape(y, linear_pred) 
   
  # Quadratic model 
  quadratic_model <- lm(y ~ x + I(x^2), data = model_data) 
  quadratic_pred <- predict(quadratic_model, newdata = model_data) 
  quadratic_mape <- mape(y, quadratic_pred) 
   
  # Cubic model 
  cubic_model <- lm(y ~ x + I(x^2) + I(x^3), data = model_data) 
  cubic_pred <- predict(cubic_model, newdata = model_data) 
  cubic_mape <- mape(y, cubic_pred) 
   
  # Quartic model 
  quartic_model <- lm(y ~ x + I(x^2) + I(x^3) + I(x^4), data = model_data) 
  quartic_pred <- predict(quartic_model, newdata = model_data) 
  quartic_mape <- mape(y, quartic_pred) 
   
  # LOESS model 
  loess_model <- loess(y ~ x, data = model_data) 
  loess_pred <- predict(loess_model, newdata = model_data) 
  loess_mape <- mape(y, loess_pred) 
   
  # Smoothing spline model 
  smooth_spline_model <- smooth.spline(x, y) 
  spline_pred <- predict(smooth_spline_model, x)$y 
  spline_mape <- mape(y, spline_pred) 



   
  # Penalized B-spline model 
  penalty_spline_model <- gam(y ~ s(x, bs = "cs"), data = model_data) 
  penalty_spline_pred <- predict(penalty_spline_model, newdata = model_data) 
  penalty_spline_mape <- mape(y, penalty_spline_pred) 
   
  # Gaussian Process model 
  gp_model <- gausspr(x = matrix(x), y = y, kernel = rbfdot(sigma = 0.1)) 
  gp_pred <- predict(gp_model, matrix(x)) 
  gp_mape <- mape(y, gp_pred) 
   
  # Collect results 
  results <- data.frame( 
    Model = c("Linear", "Quadratic", "Cubic", "Quartic", "LOESS", "Smoothing Spline", "Penalized 
B-spline", "Gaussian Process"), 
    MAPE = c(linear_mape, quadratic_mape, cubic_mape, quartic_mape, loess_mape, 
spline_mape, penalty_spline_mape, gp_mape) 
  ) 
   
  # Find the best model 
  best_model <- results[which.min(results$MAPE), ] 
   
  return(list( 
    results = results, 
    best_model = best_model 
  )) 
} 
 
# Example usage with mtcars dataset 
model_comparison <- compare_models(mtcars, "mpg", "hp") 
 
# Print results 
print(model_comparison$results) 
print(paste("Best model based on MAPE:", model_comparison$best_model$Model)) 
 

This function prints the results as text to the output, but perhaps we’d prefer a visualization for easier 
comparison? 
 

# Load necessary libraries 
library(mgcv)    # For GAMs and penalized splines 
library(splines) # For B-splines 
library(kernlab) # For Gaussian Process 
library(ggplot2) # For plotting 
 
# Define a function to calculate MAPE 
mape <- function(actual, predicted) { 
  mean(abs((actual - predicted) / actual)) * 100 
} 



 
# Define a function to compare models and plot results 
compare_models <- function(data, response, predictor) { 
  # Extract response and predictor 
  y <- data[[response]] 
  x <- data[[predictor]] 
   
  # Prepare data 
  model_data <- data.frame(x = x, y = y) 
   
  # Linear model 
  linear_model <- lm(y ~ x, data = model_data) 
  linear_pred <- predict(linear_model, newdata = model_data) 
  linear_mape <- mape(y, linear_pred) 
   
  # Quadratic model 
  quadratic_model <- lm(y ~ x + I(x^2), data = model_data) 
  quadratic_pred <- predict(quadratic_model, newdata = model_data) 
  quadratic_mape <- mape(y, quadratic_pred) 
   
  # Cubic model 
  cubic_model <- lm(y ~ x + I(x^2) + I(x^3), data = model_data) 
  cubic_pred <- predict(cubic_model, newdata = model_data) 
  cubic_mape <- mape(y, cubic_pred) 
   
  # Quartic model 
  quartic_model <- lm(y ~ x + I(x^2) + I(x^3) + I(x^4), data = model_data) 
  quartic_pred <- predict(quartic_model, newdata = model_data) 
  quartic_mape <- mape(y, quartic_pred) 
   
  # LOESS model 
  loess_model <- loess(y ~ x, data = model_data) 
  loess_pred <- predict(loess_model, newdata = model_data) 
  loess_mape <- mape(y, loess_pred) 
   
  # Smoothing spline model 
  smooth_spline_model <- smooth.spline(x, y) 
  spline_pred <- predict(smooth_spline_model, x)$y 
  spline_mape <- mape(y, spline_pred) 
   
  # Penalized B-spline model 
  penalty_spline_model <- gam(y ~ s(x, bs = "cs"), data = model_data) 
  penalty_spline_pred <- predict(penalty_spline_model, newdata = model_data) 
  penalty_spline_mape <- mape(y, penalty_spline_pred) 
   
  # Gaussian Process model 
  gp_model <- gausspr(x = matrix(x), y = y, kernel = rbfdot(sigma = 0.1)) 
  gp_pred <- predict(gp_model, matrix(x)) 



  gp_mape <- mape(y, gp_pred) 
   
  # Collect results 
  results <- data.frame( 
    Model = c("Linear", "Quadratic", "Cubic", "Quartic", "LOESS", "Smoothing Spline", "Penalized 
B-spline", "Gaussian Process"), 
    MAPE = c(linear_mape, quadratic_mape, cubic_mape, quartic_mape, loess_mape, 
spline_mape, penalty_spline_mape, gp_mape) 
  ) 
   
  # Find the best model 
  best_model <- results[which.min(results$MAPE), ] 
   
  # Plot results 
  p <- ggplot(results, aes(x = reorder(Model, MAPE), y = MAPE)) + 
    geom_bar(stat = "identity", fill = "steelblue") + 
    coord_flip() + 
    labs(title = "Model Comparison by MAPE", x = "Model", y = "MAPE") + 
    theme_minimal() 
   
  # Print plot 
  print(p) 
   
  return(list( 
    results = results, 
    best_model = best_model 
  )) 
} 
 
# Example usage with mtcars dataset 
model_comparison <- compare_models(mtcars, "mpg", "hp") 
 
# Print results 
print(model_comparison$results) 
print(paste("Best model based on MAPE:", model_comparison$best_model$Model)) 

 
 
Selection algorithms of this sort can follow traditional processes or they can be customized to help 
facilitate model selection processes. You won’t necessarily be able to automate every step of the 
process, as we’ve seen, but they can go a long way toward making valuable assessments of initial options 
so that we as data analysts can focus on the final steps of the selection process. 



Resources: 
1. https://www.biostat.jhsph.edu/~iruczins/teaching/jf/ch10.pdf 

 

https://www.biostat.jhsph.edu/~iruczins/teaching/jf/ch10.pdf

