
Lecture 16

Decision Trees, splitting methods

Decision trees are a type of supervised learning algorithm commonly used for both classification and
regression tasks. The basic idea is to recursively partition the data into subsets that maximize the
homogeneity of the target variable within each subset.

How the Decision Tree Algorithm Works:
Splitting Criteria: The algorithm begins by selecting the best feature (and corresponding threshold for
numeric features) to split the data based on a specific criterion. Common criteria include:

• Gini Impurity (used in classification): Measures the impurity or impurity of a dataset; the goal is
to minimize this impurity.

• Entropy/Information Gain (used in classification): Measures the amount of information gained
by splitting the data on a particular feature.

• Variance Reduction (used in regression): Measures the reduction in variance (spread of data)
after a split.

Splitting Process: The dataset is split into subsets using the selected feature and threshold. The process
repeats recursively on each subset, creating branches of the tree. This continues until a stopping
criterion is met (e.g., maximum depth, minimum number of samples in a node).

Leaf Nodes: When the recursive splitting process stops, the data in each subset becomes a leaf node. For
classification, the leaf node predicts the class with the majority of samples. For regression, the leaf node
predicts the average value of the target variable in that node.

Prediction: To make a prediction, start at the root of the tree and follow the branches according to the
feature values of the input until you reach a leaf node. The value at that leaf node is the prediction.

General Use in Machine Learning:

• Classification: Decision trees are often used in scenarios where interpretability is important.
They can classify data into predefined classes based on input features.

• Regression: Decision trees can also predict continuous values by partitioning the feature space.

Pros of Decision Trees:
Interpretability: Decision trees are easy to interpret and visualize. Each decision path from the root to a
leaf can be understood as a series of if-then rules.

No Need for Feature Scaling: Decision trees do not require feature scaling (e.g., standardization or
normalization).

Handles Both Numerical and Categorical Data: Decision trees can handle both types of data without
requiring much preprocessing.

Non-Linear Relationships: They can model non-linear relationships between features and the target
variable.

Versatile: Can be used for both classification and regression tasks.

Cons of Decision Trees:
Overfitting: Decision trees are prone to overfitting, especially when the tree is deep and complex. This
happens because the model can capture noise in the training data rather than the underlying data
patterns. Pruning techniques and setting constraints like maximum tree depth can help mitigate this
issue.

Instability: Small changes in the data can lead to different splits and, therefore, different trees (high
variance).

Bias Towards Dominant Classes: If some classes dominate the training data, the decision tree might be
biased towards those classes.

Difficulty in Capturing Linear Relationships: Decision trees might not capture simple linear relationships
as efficiently as other algorithms like linear regression.

Greedy Algorithm: The algorithm is greedy and does not guarantee an optimal solution. It selects the
best feature to split at each node based on local criteria, which might not lead to a globally optimal tree.

Common Use Cases:

• Medical Diagnosis: Predicting the presence of a disease based on symptoms and other patient
data.

• Customer Segmentation: Identifying groups of customers with similar characteristics.
• Fraud Detection: Classifying transactions as fraudulent or non-fraudulent based on various

features.
• Credit Scoring: Assessing the creditworthiness of an individual.

Variants and Enhancements:

• Ensemble Methods: Decision trees are the base learners in ensemble methods like Random
Forests and Gradient Boosting Machines (GBMs), which combine multiple trees to improve
accuracy and reduce overfitting.

• Pruning: Techniques like cost-complexity pruning (used in CART) help reduce the size of the tree
by removing sections of the tree that provide little power to classify instances.

Decision trees are a fundamental tool in machine learning, valued for their simplicity, interpretability,
and flexibility. However, to leverage them effectively, it's important to be aware of their limitations,
particularly with overfitting and instability, and to consider ensemble methods to overcome some of
these issues.

Our goal here will be to consider customizing the splitting criteria and the stopping criteria. We’ll look at
ensembles in the next lecture.

We mentioned three common splitting criteria above, but let’s look at those more closely along with
some other options. Different splitting criteria are chosen based on the nature of the task (classification
vs. regression), the characteristics of the data, and the specific goals of the analysis. The choice of
criterion can significantly affect the performance and interpretability of the decision tree model.

1. Gini Impurity (Classification)

• Description: Gini impurity measures the likelihood of incorrectly classifying a randomly chosen
element if it were randomly labeled according to the distribution of labels in the dataset.

• Formula: 𝐺𝑖𝑛𝑖 𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦 = 1 − ∑ 𝑝𝑖
2𝐶

𝑖=1 where 𝑝𝑖 is the probability of an element being
classified for class 𝑖 and 𝐶 is the number of classes.

• Usage: This is the default criterion used in CART (Classification and Regression Trees) for
classification tasks.

2. Entropy/Information Gain (Classification)

• Description: Entropy measures the disorder or impurity in the dataset. Information gain is the
reduction in entropy after a dataset is split on an attribute.

• Formula: 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑝𝑖log2(𝑝𝑖)𝐶
𝑖=1

 Information gain is calculated as:

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑝𝑎𝑟𝑒𝑛𝑡) − ∑
𝑁𝑐ℎ𝑖𝑙𝑑

𝑁𝑝𝑎𝑟𝑒𝑛𝑡
× 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑐ℎ𝑖𝑙𝑑)

𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛

• Usage: Commonly used in algorithms like ID3 and C4.5.

3. Variance Reduction (Regression)

• Description: Variance reduction is used as a splitting criterion for regression tasks. It measures
the reduction in variance (spread of the target values) after a split.

• Formula: 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
1

𝑁
∑ (𝑦𝑖 − 𝑦̅)2𝑁

𝑖=1

• Usage: This is typically used in regression trees.

4. Mean Squared Error (MSE) Reduction (Regression)

• Description: Mean squared error (MSE) is another criterion used in regression trees to evaluate
the quality of a split.

• Formula: 𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦1 − 𝑦̂)2𝑁

𝑖=1 The split is chosen to minimize the MSE.

• Usage: Used in many regression trees and algorithms that build regression trees like CART.

5. Chi-Square Statistic (Classification)

• Description: The Chi-Square statistic measures the divergence between the observed and
expected frequencies of the target variable. A split is chosen based on the highest Chi-Square
value.

• Formula: 𝜒2 = ∑
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖
 where 𝑂𝑖 is the observed frequency, and 𝐸𝑖 is the expected frequency.

• Usage: Sometimes used in decision trees that prioritize the significance of splits (like CHAID).

6. Reduction in Impurity (Classification and Regression)

• Description: This is a general criterion that includes Gini impurity, entropy, and variance. The
reduction in impurity after a split is measured, and the best split is selected.

• Usage: Commonly used in decision trees and ensemble methods.

7. Twoing Rule (Classification)

• Description: The Twoing rule is designed to maximize the difference between two groups formed
by a split, focusing on creating two equally large groups with different class distributions.

• Formula: 𝑇𝑤𝑜𝑖𝑛𝑔 𝑆𝑐𝑜𝑟𝑒 = (
𝑁𝐿

𝑁
×

𝑁𝑅

𝑁
) × (∑|𝑝𝐿𝑖 − 𝑝𝑅𝑖|)2 where 𝑝𝐿𝑖 and 𝑝𝑅𝑖 are the proportions

of class 𝑖 in the left and right nodes.

• Usage: Often used in multi-class classification problems.

8. Friedman's MSE (Regression)

• Description: This criterion is used in gradient boosting machines and is based on minimizing the
MSE across multiple iterations.

• Usage: Used in boosting algorithms like Gradient Boosted Trees (GBTs) or XGBoost for regression.

9. Log-Rank Test (Survival Analysis)

• Description: Used in survival analysis trees, the log-rank test measures the difference between
survival times across groups.

• Usage: Used in survival decision trees where the outcome is the time until an event occurs (e.g.,
survival times).

10. Laplacian Smoothing (Classification)

• Description: A variant of Gini and entropy that applies Laplacian smoothing to handle cases with
small sample sizes or skewed class distributions.

• Usage: Rarely used but applicable when handling noisy or imbalanced datasets.

To see how some of these work, we’ll start with a random split of the iris dataset and see how the
calculations are performed for classification before we use them in the bigger algorithm. To figure out
where the split should occur, many such calculations are tested to determine where the optimal split
should be (or an optimization algorithm can be applied).

Load the dataset
data(iris)

Set a seed for reproducibility
set.seed(123)

Randomly split the dataset into a training set and test set
split_index <- sample(1:nrow(iris), 0.7 * nrow(iris))
train_data <- iris[split_index,]
test_data <- iris[-split_index,]

Take a quick look at the training data
head(train_data)

calculate_gini <- function(class_counts) {
 total_samples <- sum(class_counts)
 gini <- 1 - sum((class_counts / total_samples) ^ 2)
 return(gini)
}

calculate_entropy <- function(class_counts) {
 total_samples <- sum(class_counts)
 probs <- class_counts / total_samples
 entropy <- -sum(probs * log2(probs + 1e-9)) # Adding a small value to avoid log(0)
 return(entropy)

}

calculate_information_gain <- function(parent_class_counts, left_class_counts,
right_class_counts) {
 total_samples <- sum(parent_class_counts)
 left_weight <- sum(left_class_counts) / total_samples
 right_weight <- sum(right_class_counts) / total_samples

 parent_entropy <- calculate_entropy(parent_class_counts)
 left_entropy <- calculate_entropy(left_class_counts)
 right_entropy <- calculate_entropy(right_class_counts)

 info_gain <- parent_entropy - (left_weight * left_entropy + right_weight * right_entropy)
 return(info_gain)
}

calculate_chi_squared <- function(observed_counts, expected_counts) {
 chi_squared <- sum((observed_counts - expected_counts) ^ 2 / (expected_counts + 1e-9)) #
Adding a small value to avoid division by 0
 return(chi_squared)
}

calculate_twoing_rule <- function(left_class_counts, right_class_counts) {
 total_left <- sum(left_class_counts)
 total_right <- sum(right_class_counts)

 left_probs <- left_class_counts / total_left
 right_probs <- right_class_counts / total_right

 twoing <- 0.25 * sum(abs(left_probs - right_probs)) ^ 2
 return(twoing)
}

Choose a feature and make a random split
feature <- "Petal.Length"
split_value <- median(train_data[[feature]])

Split the data based on the chosen feature and split value
left_split <- train_data[train_data[[feature]] <= split_value,]
right_split <- train_data[train_data[[feature]] > split_value,]

Count the class occurrences in each split
parent_class_counts <- table(train_data$Species)
left_class_counts <- table(left_split$Species)
right_class_counts <- table(right_split$Species)

Ensure that class counts include all three species, even if some have zero count

left_class_counts <- left_class_counts[match(levels(train_data$Species),
names(left_class_counts), nomatch = 0)]
right_class_counts <- right_class_counts[match(levels(train_data$Species),
names(right_class_counts), nomatch = 0)]

Fill NAs with zeros
left_class_counts[is.na(left_class_counts)] <- 0
right_class_counts[is.na(right_class_counts)] <- 0

Calculate Gini Impurity for the parent and child nodes
gini_left <- calculate_gini(left_class_counts)
gini_right <- calculate_gini(right_class_counts)
gini_parent <- calculate_gini(parent_class_counts)

Calculate Information Gain
info_gain <- calculate_information_gain(parent_class_counts, left_class_counts,
right_class_counts)

Calculate Chi-Squared
expected_left <- parent_class_counts * (sum(left_class_counts) / sum(parent_class_counts))
expected_right <- parent_class_counts * (sum(right_class_counts) / sum(parent_class_counts))

chi_squared_left <- calculate_chi_squared(left_class_counts, expected_left)
chi_squared_right <- calculate_chi_squared(right_class_counts, expected_right)
chi_squared_total <- chi_squared_left + chi_squared_right

Calculate Twoing Rule
twoing <- calculate_twoing_rule(left_class_counts, right_class_counts)

Print results
cat("Gini Impurity (Parent):", gini_parent, "\n")
cat("Gini Impurity (Left):", gini_left, "\n")
cat("Gini Impurity (Right):", gini_right, "\n")
cat("Information Gain:", info_gain, "\n")
cat("Chi-Squared:", chi_squared_total, "\n")
cat("Twoing Rule:", twoing, "\n")

Each of these represents just one calculation. The comparison of splitting locations is where the splitting
rules operate and we aren’t doing comparisons just yet. Before we do that, let’s look at the regression
splitting criteria.

Load the dataset
data(mtcars)

Set a seed for reproducibility
set.seed(123)

Randomly split the dataset into a training set and test set

split_index <- sample(1:nrow(mtcars), 0.7 * nrow(mtcars))
train_data <- mtcars[split_index,]
test_data <- mtcars[-split_index,]

Take a quick look at the training data
head(train_data)

calculate_variance_reduction <- function(parent_values, left_values, right_values) {
 parent_variance <- var(parent_values)

 left_weight <- length(left_values) / length(parent_values)
 right_weight <- length(right_values) / length(parent_values)

 left_variance <- var(left_values)
 right_variance <- var(right_values)

 variance_reduction <- parent_variance - (left_weight * left_variance + right_weight *
right_variance)
 return(variance_reduction)
}

calculate_mse_reduction <- function(parent_values, left_values, right_values) {
 mse_parent <- mean((parent_values - mean(parent_values)) ^ 2)

 left_weight <- length(left_values) / length(parent_values)
 right_weight <- length(right_values) / length(parent_values)

 mse_left <- mean((left_values - mean(left_values)) ^ 2)
 mse_right <- mean((right_values - mean(right_values)) ^ 2)

 mse_reduction <- mse_parent - (left_weight * mse_left + right_weight * mse_right)
 return(mse_reduction)
}

Choose a feature and make a random split
feature <- "hp"
split_value <- median(train_data[[feature]])

Split the data based on the chosen feature and split value
left_split <- train_data[train_data[[feature]] <= split_value,]
right_split <- train_data[train_data[[feature]] > split_value,]

Extract the target variable for parent and child nodes
parent_values <- train_data$mpg
left_values <- left_split$mpg
right_values <- right_split$mpg

Calculate Variance Reduction

variance_reduction <- calculate_variance_reduction(parent_values, left_values, right_values)

Calculate MSE Reduction
mse_reduction <- calculate_mse_reduction(parent_values, left_values, right_values)

Print results
cat("Variance Reduction:", variance_reduction, "\n")
cat("MSE Reduction:", mse_reduction, "\n")

In the case of the Gini Impurity index, lower values indicate better splits, but in the others, higher values
indicate better splits.

We can create a plot to visualize the results of the split.

Load ggplot2 for visualization
library(ggplot2)

Create a data frame to plot
plot_data <- data.frame(
 mpg = train_data$mpg,
 split = ifelse(train_data[[feature]] <= split_value, "Left Node", "Right Node")
)

Plot histograms for each split
ggplot(plot_data, aes(x = mpg, fill = split)) +
 geom_histogram(position = "dodge", bins = 10, alpha = 0.7) +
 labs(title = "Distribution of MPG in Left and Right Nodes",
 x = "MPG", y = "Count") +
 theme_minimal()

Before we move on to the full decision tree algorithm, lets look at the stopping criteria options.

In decision tree algorithms, stopping criteria are conditions that prevent the tree from growing
indefinitely and help avoid overfitting. Common stopping criteria include:

1. Maximum Depth: The tree is only allowed to grow to a certain depth.
2. Minimum Number of Samples per Node: A node will only be split if it contains a minimum

number of samples.
3. Minimum Reduction in Impurity: A node will only be split if the reduction in impurity (e.g.,

variance reduction, MSE reduction) is above a certain threshold.
4. Minimum Leaf Node Size: The leaf nodes should have at least a minimum number of samples.

5. Early Stopping Based on Validation Error: If the validation error starts to increase, stop further
splits.

Load the dataset
data(mtcars)

Stopping criterion: Maximum Depth
max_depth_criterion <- function(current_depth, max_depth) {
 return(current_depth >= max_depth)
}

Example Usage:
current_depth <- 3
max_depth <- 5
cat("Should we stop? ", max_depth_criterion(current_depth, max_depth), "\n")

Stopping criterion: Minimum Number of Samples per Node
min_samples_criterion <- function(node_samples, min_samples) {
 return(length(node_samples) < min_samples)
}

Example Usage:
node_samples <- train_data$mpg
min_samples <- 5
cat("Should we stop? ", min_samples_criterion(node_samples, min_samples), "\n")

Stopping criterion: Minimum Reduction in Impurity
min_impurity_criterion <- function(impurity_reduction, min_impurity_reduction) {
 return(impurity_reduction < min_impurity_reduction)
}

Example Usage:
impurity_reduction <- 0.02
min_impurity_reduction <- 0.05
cat("Should we stop? ", min_impurity_criterion(impurity_reduction, min_impurity_reduction), "\n")

Stopping criterion: Minimum Leaf Node Size
min_leaf_size_criterion <- function(left_node, right_node, min_leaf_size) {
 return(length(left_node) < min_leaf_size || length(right_node) < min_leaf_size)
}

Example Usage:
left_node <- train_data$mpg[train_data$hp <= 100]
right_node <- train_data$mpg[train_data$hp > 100]
min_leaf_size <- 3
cat("Should we stop? ", min_leaf_size_criterion(left_node, right_node, min_leaf_size), "\n")

Stopping criterion: Early Stopping Based on Validation Error

early_stopping_criterion <- function(validation_errors) {
 if (length(validation_errors) < 2) {
 return(FALSE)
 }
 return(validation_errors[length(validation_errors)] > validation_errors[length(validation_errors) -
1])
}

Example Usage:
validation_errors <- c(0.3, 0.28, 0.27, 0.29) # Example validation errors from previous splits
cat("Should we stop? ", early_stopping_criterion(validation_errors), "\n")

Now that we have all the pieces that can be customized, let’s look at the full decision tree algorithm to
see how all the pieces fit together.

#full classification algorithm
Load the iris dataset
data(iris)

Calculate Gini Impurity
gini_impurity <- function(labels) {
 probs <- table(labels) / length(labels)
 return(1 - sum(probs^2))
}

Calculate the mode (most common class)
get_mode <- function(labels) {
 return(names(sort(table(labels), decreasing = TRUE))[1])
}

Function to split the dataset
split_dataset <- function(dataset, feature_index, threshold) {
 left <- dataset[dataset[, feature_index] <= threshold,]
 right <- dataset[dataset[, feature_index] > threshold,]
 return(list(left = left, right = right))
}

Stopping criteria: max depth and minimum samples
max_depth_criterion <- function(current_depth, max_depth) {
 return(current_depth >= max_depth)
}

min_samples_criterion <- function(data, min_samples) {
 return(nrow(data) < min_samples)
}

Recursive function to build the tree
build_tree <- function(data, current_depth = 0, max_depth = 5, min_samples = 5) {

 labels <- data[, ncol(data)]

 # Stopping criteria
 if (max_depth_criterion(current_depth, max_depth) || min_samples_criterion(data,
min_samples) || length(unique(labels)) == 1) {
 return(list(leaf = TRUE, prediction = get_mode(labels)))
 }

 best_gain <- -Inf
 best_split <- NULL

 # Find the best split
 for (feature_index in 1:(ncol(data) - 1)) {
 unique_values <- unique(data[, feature_index])

 for (threshold in unique_values) {
 splits <- split_dataset(data, feature_index, threshold)
 left_labels <- splits$left[, ncol(splits$left)]
 right_labels <- splits$right[, ncol(splits$right)]

 # Skip if either split is empty
 if (length(left_labels) == 0 || length(right_labels) == 0) {
 next
 }

 # Compute the Gini Gain
 gain <- gini_impurity(labels) -
 (length(left_labels) / length(labels)) * gini_impurity(left_labels) -
 (length(right_labels) / length(labels)) * gini_impurity(right_labels)

 if (!is.na(gain) && gain > best_gain) {
 best_gain <- gain
 best_split <- list(feature_index = feature_index, threshold = threshold, left = splits$left, right
= splits$right)
 }
 }
 }

 # If no good split found, return a leaf
 if (is.null(best_split)) {
 return(list(leaf = TRUE, prediction = get_mode(labels)))
 }

 # Recurse for the left and right branches
 left_branch <- build_tree(best_split$left, current_depth + 1, max_depth, min_samples)
 right_branch <- build_tree(best_split$right, current_depth + 1, max_depth, min_samples)

 return(list(leaf = FALSE, feature_index = best_split$feature_index, threshold =
best_split$threshold, left = left_branch, right = right_branch))
}

Predict using the tree
predict_tree <- function(tree, sample) {
 if (tree$leaf) {
 return(tree$prediction)
 }

 if (sample[tree$feature_index] <= tree$threshold) {
 return(predict_tree(tree$left, sample))
 } else {
 return(predict_tree(tree$right, sample))
 }
}

Train the tree
tree <- build_tree(iris, max_depth = 4, min_samples = 5)

Predict on the entire dataset
predictions <- sapply(1:nrow(iris), function(i) predict_tree(tree, iris[i, -ncol(iris)]))

Confusion Matrix
table(Predicted = predictions, Actual = iris$Species)

Visualizing a manually coded tree is more complicated than trees built from packages, so to visualize the
tree itself, we’ll re-implement a similar tree using a package and then apply its built-in visualization tools
to get an idea of what we have here.

Now, let’s consider the full regression algorithm.

#regression tree
Load the mtcars dataset
data(mtcars)

Step 1: Define a function to calculate the Mean Squared Error (MSE)
mse <- function(y) {
 mean((y - mean(y))^2)

}

Step 2: Define a function to calculate the variance reduction (gain)
variance_reduction <- function(y, left_indices, right_indices) {
 total_var = mse(y)
 left_var = mse(y[left_indices])
 right_var = mse(y[right_indices])
 n = length(y)
 left_weight = length(left_indices) / n
 right_weight = length(right_indices) / n
 reduction = total_var - (left_weight * left_var + right_weight * right_var)
 return(reduction)
}

Step 3: Define a function to find the best split
find_best_split <- function(X, y) {
 best_gain = -Inf
 best_split = NULL

 n_features = ncol(X)

 for (feature in 1:n_features) {
 feature_values = X[, feature]
 possible_splits = unique(feature_values)

 for (split_value in possible_splits) {
 left_indices = which(feature_values <= split_value)
 right_indices = which(feature_values > split_value)

 if (length(left_indices) == 0 || length(right_indices) == 0) {
 next # Skip if any split has no data points
 }

 gain = variance_reduction(y, left_indices, right_indices)

 # Ensure gain is not NA or NaN
 if (is.na(gain) || is.nan(gain)) {
 next # Skip invalid gain values
 }

 if (gain > best_gain) {
 best_gain = gain
 best_split = list(feature = feature, value = split_value, left_indices = left_indices,
right_indices = right_indices)
 }
 }
 }

 return(best_split)
}

Step 4: Define a function to build the regression tree
build_tree <- function(X, y, min_samples_split = 10, max_depth = 5, current_depth = 1) {
 if (nrow(X) < min_samples_split || current_depth > max_depth) {
 return(list(prediction = mean(y))) # Return a leaf node with the mean value
 }

 split = find_best_split(X, y)

 if (is.null(split)) {
 return(list(prediction = mean(y))) # Return a leaf node if no valid split is found
 }

 left_tree = build_tree(X[split$left_indices, , drop = FALSE], y[split$left_indices],
min_samples_split, max_depth, current_depth + 1)
 right_tree = build_tree(X[split$right_indices, , drop = FALSE], y[split$right_indices],
min_samples_split, max_depth, current_depth + 1)

 return(list(
 feature = split$feature,
 value = split$value,
 left = left_tree,
 right = right_tree
))
}

Step 5: Define a function to make predictions with the regression tree
predict_tree <- function(tree, X) {
 if (!is.null(tree$prediction)) {
 return(tree$prediction)
 }

 feature_value = X[tree$feature]

 if (feature_value <= tree$value) {
 return(predict_tree(tree$left, X))
 } else {
 return(predict_tree(tree$right, X))
 }
}

Step 6: Example usage with the mtcars dataset
set.seed(42)
X <- as.matrix(mtcars[, c("wt", "qsec", "am")])
y <- mtcars$mpg

Build the tree
regression_tree <- build_tree(X, y, min_samples_split = 5, max_depth = 4)

Make predictions
predictions <- apply(X, 1, function(row) predict_tree(regression_tree, row))

Print the predictions
print(predictions)

Function to print the decision tree structure
print_tree <- function(tree, indent = "") {
 if (!is.null(tree$prediction)) {
 cat(indent, "Prediction:", round(tree$prediction, 2), "\n")
 } else {
 cat(indent, "Feature", tree$feature, "<=", tree$value, "\n")
 cat(indent, "Left:\n")
 print_tree(tree$left, indent = paste0(indent, " "))
 cat(indent, "Right:\n")
 print_tree(tree$right, indent = paste0(indent, " "))
 }
}

Print the tree
print_tree(regression_tree)

Visualize the predictions vs actual values
library(ggplot2)

Create a data frame for the comparison
results <- data.frame(
 Actual = y,
 Predicted = predictions
)

Plot the results
ggplot(results, aes(x = Actual, y = Predicted)) +
 geom_point(color = "blue", size = 3) +
 geom_abline(intercept = 0, slope = 1, color = "red", linetype = "dashed") +
 labs(title = "Predicted vs Actual MPG",
 x = "Actual MPG",
 y = "Predicted MPG") +
 theme_minimal()

This code includes both a visualization of the predictions versus actual, and a printed (text)
representation of the decision tree which prints to the console.

Resources:

1. https://scientistcafe.com/ids/splitting-criteria
2. https://www.analyticsvidhya.com/blog/2020/06/4-ways-split-decision-tree/
3. https://www.geeksforgeeks.org/how-to-determine-the-best-split-in-decision-tree/
4. https://www.machinelearningnuggets.com/splitting-criteria-in-decision-trees/

https://scientistcafe.com/ids/splitting-criteria
https://www.analyticsvidhya.com/blog/2020/06/4-ways-split-decision-tree/
https://www.geeksforgeeks.org/how-to-determine-the-best-split-in-decision-tree/
https://www.machinelearningnuggets.com/splitting-criteria-in-decision-trees/

