
Lecture 16 
 
Decision Trees, splitting methods 
 
Decision trees are a type of supervised learning algorithm commonly used for both classification and 
regression tasks. The basic idea is to recursively partition the data into subsets that maximize the 
homogeneity of the target variable within each subset. 
 
How the Decision Tree Algorithm Works: 
Splitting Criteria: The algorithm begins by selecting the best feature (and corresponding threshold for 
numeric features) to split the data based on a specific criterion. Common criteria include: 

• Gini Impurity (used in classification): Measures the impurity or impurity of a dataset; the goal is 
to minimize this impurity. 

• Entropy/Information Gain (used in classification): Measures the amount of information gained 
by splitting the data on a particular feature. 

• Variance Reduction (used in regression): Measures the reduction in variance (spread of data) 
after a split. 

 
Splitting Process: The dataset is split into subsets using the selected feature and threshold. The process 
repeats recursively on each subset, creating branches of the tree. This continues until a stopping 
criterion is met (e.g., maximum depth, minimum number of samples in a node). 
 
Leaf Nodes: When the recursive splitting process stops, the data in each subset becomes a leaf node. For 
classification, the leaf node predicts the class with the majority of samples. For regression, the leaf node 
predicts the average value of the target variable in that node. 
 
Prediction: To make a prediction, start at the root of the tree and follow the branches according to the 
feature values of the input until you reach a leaf node. The value at that leaf node is the prediction. 
 
General Use in Machine Learning: 

• Classification: Decision trees are often used in scenarios where interpretability is important. 
They can classify data into predefined classes based on input features. 

• Regression: Decision trees can also predict continuous values by partitioning the feature space. 
 
Pros of Decision Trees: 
Interpretability: Decision trees are easy to interpret and visualize. Each decision path from the root to a 
leaf can be understood as a series of if-then rules. 
 
No Need for Feature Scaling: Decision trees do not require feature scaling (e.g., standardization or 
normalization).  
 
Handles Both Numerical and Categorical Data: Decision trees can handle both types of data without 
requiring much preprocessing. 
 
Non-Linear Relationships: They can model non-linear relationships between features and the target 
variable. 
 
Versatile: Can be used for both classification and regression tasks. 



Cons of Decision Trees: 
Overfitting: Decision trees are prone to overfitting, especially when the tree is deep and complex. This 
happens because the model can capture noise in the training data rather than the underlying data 
patterns. Pruning techniques and setting constraints like maximum tree depth can help mitigate this 
issue. 
 
Instability: Small changes in the data can lead to different splits and, therefore, different trees (high 
variance). 
 
Bias Towards Dominant Classes: If some classes dominate the training data, the decision tree might be 
biased towards those classes. 
 
Difficulty in Capturing Linear Relationships: Decision trees might not capture simple linear relationships 
as efficiently as other algorithms like linear regression. 
 
Greedy Algorithm: The algorithm is greedy and does not guarantee an optimal solution. It selects the 
best feature to split at each node based on local criteria, which might not lead to a globally optimal tree. 
 
Common Use Cases: 

• Medical Diagnosis: Predicting the presence of a disease based on symptoms and other patient 
data. 

• Customer Segmentation: Identifying groups of customers with similar characteristics. 
• Fraud Detection: Classifying transactions as fraudulent or non-fraudulent based on various 

features. 
• Credit Scoring: Assessing the creditworthiness of an individual. 

 
Variants and Enhancements: 

• Ensemble Methods: Decision trees are the base learners in ensemble methods like Random 
Forests and Gradient Boosting Machines (GBMs), which combine multiple trees to improve 
accuracy and reduce overfitting. 

• Pruning: Techniques like cost-complexity pruning (used in CART) help reduce the size of the tree 
by removing sections of the tree that provide little power to classify instances. 

 
Decision trees are a fundamental tool in machine learning, valued for their simplicity, interpretability, 
and flexibility. However, to leverage them effectively, it's important to be aware of their limitations, 
particularly with overfitting and instability, and to consider ensemble methods to overcome some of 
these issues. 
 
Our goal here will be to consider customizing the splitting criteria and the stopping criteria. We’ll look at 
ensembles in the next lecture. 
 
We mentioned three common splitting criteria above, but let’s look at those more closely along with 
some other options. Different splitting criteria are chosen based on the nature of the task (classification 
vs. regression), the characteristics of the data, and the specific goals of the analysis. The choice of 
criterion can significantly affect the performance and interpretability of the decision tree model. 
 
1. Gini Impurity (Classification) 



• Description: Gini impurity measures the likelihood of incorrectly classifying a randomly chosen 
element if it were randomly labeled according to the distribution of labels in the dataset. 

• Formula: 𝐺𝑖𝑛𝑖 𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦 = 1 − ∑ 𝑝𝑖
2𝐶

𝑖=1   where 𝑝𝑖  is the probability of an element being 
classified for class 𝑖 and 𝐶 is the number of classes. 

• Usage: This is the default criterion used in CART (Classification and Regression Trees) for 
classification tasks. 

 
2. Entropy/Information Gain (Classification) 

• Description: Entropy measures the disorder or impurity in the dataset. Information gain is the 
reduction in entropy after a dataset is split on an attribute. 

• Formula: 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑ 𝑝𝑖log2(𝑝𝑖)𝐶
𝑖=1  

 Information gain is calculated as:   

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑝𝑎𝑟𝑒𝑛𝑡) − ∑
𝑁𝑐ℎ𝑖𝑙𝑑

𝑁𝑝𝑎𝑟𝑒𝑛𝑡
× 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑐ℎ𝑖𝑙𝑑)

𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛

 

• Usage: Commonly used in algorithms like ID3 and C4.5. 
 
3. Variance Reduction (Regression) 

• Description: Variance reduction is used as a splitting criterion for regression tasks. It measures 
the reduction in variance (spread of the target values) after a split. 

• Formula: 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
1

𝑁
∑ (𝑦𝑖 − 𝑦̅)2𝑁

𝑖=1   

• Usage: This is typically used in regression trees. 
 
4. Mean Squared Error (MSE) Reduction (Regression) 

• Description: Mean squared error (MSE) is another criterion used in regression trees to evaluate 
the quality of a split. 

• Formula: 𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦1 − 𝑦̂)2𝑁

𝑖=1   The split is chosen to minimize the MSE. 

• Usage: Used in many regression trees and algorithms that build regression trees like CART. 
 
5. Chi-Square Statistic (Classification) 

• Description: The Chi-Square statistic measures the divergence between the observed and 
expected frequencies of the target variable. A split is chosen based on the highest Chi-Square 
value. 

• Formula: 𝜒2 = ∑
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖
  where 𝑂𝑖 is the observed frequency, and 𝐸𝑖  is the expected frequency. 

• Usage: Sometimes used in decision trees that prioritize the significance of splits (like CHAID). 
 
6. Reduction in Impurity (Classification and Regression) 

• Description: This is a general criterion that includes Gini impurity, entropy, and variance. The 
reduction in impurity after a split is measured, and the best split is selected. 

• Usage: Commonly used in decision trees and ensemble methods. 
 
7. Twoing Rule (Classification) 

• Description: The Twoing rule is designed to maximize the difference between two groups formed 
by a split, focusing on creating two equally large groups with different class distributions. 

• Formula: 𝑇𝑤𝑜𝑖𝑛𝑔 𝑆𝑐𝑜𝑟𝑒 = (
𝑁𝐿

𝑁
×

𝑁𝑅

𝑁
) × (∑|𝑝𝐿𝑖 − 𝑝𝑅𝑖|)2 where 𝑝𝐿𝑖 and 𝑝𝑅𝑖 are the proportions 

of class 𝑖 in the left and right nodes. 



• Usage: Often used in multi-class classification problems. 
 
8. Friedman's MSE (Regression) 

• Description: This criterion is used in gradient boosting machines and is based on minimizing the 
MSE across multiple iterations. 

• Usage: Used in boosting algorithms like Gradient Boosted Trees (GBTs) or XGBoost for regression. 
 
9. Log-Rank Test (Survival Analysis) 

• Description: Used in survival analysis trees, the log-rank test measures the difference between 
survival times across groups. 

• Usage: Used in survival decision trees where the outcome is the time until an event occurs (e.g., 
survival times). 

 
10. Laplacian Smoothing (Classification) 

• Description: A variant of Gini and entropy that applies Laplacian smoothing to handle cases with 
small sample sizes or skewed class distributions. 

• Usage: Rarely used but applicable when handling noisy or imbalanced datasets. 
 
To see how some of these work, we’ll start with a random split of the iris dataset and see how the 
calculations are performed for classification before we use them in the bigger algorithm. To figure out 
where the split should occur, many such calculations are tested to determine where the optimal split 
should be (or an optimization algorithm can be applied). 
 

# Load the dataset 
data(iris) 
 
# Set a seed for reproducibility 
set.seed(123) 
 
# Randomly split the dataset into a training set and test set 
split_index <- sample(1:nrow(iris), 0.7 * nrow(iris)) 
train_data <- iris[split_index, ] 
test_data <- iris[-split_index, ] 
 
# Take a quick look at the training data 
head(train_data) 
 
calculate_gini <- function(class_counts) { 
  total_samples <- sum(class_counts) 
  gini <- 1 - sum((class_counts / total_samples) ^ 2) 
  return(gini) 
} 
 
calculate_entropy <- function(class_counts) { 
  total_samples <- sum(class_counts) 
  probs <- class_counts / total_samples 
  entropy <- -sum(probs * log2(probs + 1e-9)) # Adding a small value to avoid log(0) 
  return(entropy) 



} 
 
calculate_information_gain <- function(parent_class_counts, left_class_counts, 
right_class_counts) { 
  total_samples <- sum(parent_class_counts) 
  left_weight <- sum(left_class_counts) / total_samples 
  right_weight <- sum(right_class_counts) / total_samples 
   
  parent_entropy <- calculate_entropy(parent_class_counts) 
  left_entropy <- calculate_entropy(left_class_counts) 
  right_entropy <- calculate_entropy(right_class_counts) 
   
  info_gain <- parent_entropy - (left_weight * left_entropy + right_weight * right_entropy) 
  return(info_gain) 
} 
 
calculate_chi_squared <- function(observed_counts, expected_counts) { 
  chi_squared <- sum((observed_counts - expected_counts) ^ 2 / (expected_counts + 1e-9)) # 
Adding a small value to avoid division by 0 
  return(chi_squared) 
} 
 
calculate_twoing_rule <- function(left_class_counts, right_class_counts) { 
  total_left <- sum(left_class_counts) 
  total_right <- sum(right_class_counts) 
   
  left_probs <- left_class_counts / total_left 
  right_probs <- right_class_counts / total_right 
   
  twoing <- 0.25 * sum(abs(left_probs - right_probs)) ^ 2 
  return(twoing) 
} 
 
# Choose a feature and make a random split 
feature <- "Petal.Length" 
split_value <- median(train_data[[feature]]) 
 
# Split the data based on the chosen feature and split value 
left_split <- train_data[train_data[[feature]] <= split_value, ] 
right_split <- train_data[train_data[[feature]] > split_value, ] 
 
# Count the class occurrences in each split 
parent_class_counts <- table(train_data$Species) 
left_class_counts <- table(left_split$Species) 
right_class_counts <- table(right_split$Species) 
 
# Ensure that class counts include all three species, even if some have zero count 



left_class_counts <- left_class_counts[match(levels(train_data$Species), 
names(left_class_counts), nomatch = 0)] 
right_class_counts <- right_class_counts[match(levels(train_data$Species), 
names(right_class_counts), nomatch = 0)] 
 
# Fill NAs with zeros 
left_class_counts[is.na(left_class_counts)] <- 0 
right_class_counts[is.na(right_class_counts)] <- 0 
 
# Calculate Gini Impurity for the parent and child nodes 
gini_left <- calculate_gini(left_class_counts) 
gini_right <- calculate_gini(right_class_counts) 
gini_parent <- calculate_gini(parent_class_counts) 
 
# Calculate Information Gain 
info_gain <- calculate_information_gain(parent_class_counts, left_class_counts, 
right_class_counts) 
 
# Calculate Chi-Squared 
expected_left <- parent_class_counts * (sum(left_class_counts) / sum(parent_class_counts)) 
expected_right <- parent_class_counts * (sum(right_class_counts) / sum(parent_class_counts)) 
 
chi_squared_left <- calculate_chi_squared(left_class_counts, expected_left) 
chi_squared_right <- calculate_chi_squared(right_class_counts, expected_right) 
chi_squared_total <- chi_squared_left + chi_squared_right 
 
# Calculate Twoing Rule 
twoing <- calculate_twoing_rule(left_class_counts, right_class_counts) 
 
# Print results 
cat("Gini Impurity (Parent):", gini_parent, "\n") 
cat("Gini Impurity (Left):", gini_left, "\n") 
cat("Gini Impurity (Right):", gini_right, "\n") 
cat("Information Gain:", info_gain, "\n") 
cat("Chi-Squared:", chi_squared_total, "\n") 
cat("Twoing Rule:", twoing, "\n") 

 
Each of these represents just one calculation. The comparison of splitting locations is where the splitting 
rules operate and we aren’t doing comparisons just yet. Before we do that, let’s look at the regression 
splitting criteria. 
 

# Load the dataset 
data(mtcars) 
 
# Set a seed for reproducibility 
set.seed(123) 
 
# Randomly split the dataset into a training set and test set 



split_index <- sample(1:nrow(mtcars), 0.7 * nrow(mtcars)) 
train_data <- mtcars[split_index, ] 
test_data <- mtcars[-split_index, ] 
 
# Take a quick look at the training data 
head(train_data) 
 
calculate_variance_reduction <- function(parent_values, left_values, right_values) { 
  parent_variance <- var(parent_values) 
   
  left_weight <- length(left_values) / length(parent_values) 
  right_weight <- length(right_values) / length(parent_values) 
   
  left_variance <- var(left_values) 
  right_variance <- var(right_values) 
   
  variance_reduction <- parent_variance - (left_weight * left_variance + right_weight * 
right_variance) 
  return(variance_reduction) 
} 
 
calculate_mse_reduction <- function(parent_values, left_values, right_values) { 
  mse_parent <- mean((parent_values - mean(parent_values)) ^ 2) 
   
  left_weight <- length(left_values) / length(parent_values) 
  right_weight <- length(right_values) / length(parent_values) 
   
  mse_left <- mean((left_values - mean(left_values)) ^ 2) 
  mse_right <- mean((right_values - mean(right_values)) ^ 2) 
   
  mse_reduction <- mse_parent - (left_weight * mse_left + right_weight * mse_right) 
  return(mse_reduction) 
} 
 
# Choose a feature and make a random split 
feature <- "hp" 
split_value <- median(train_data[[feature]]) 
 
# Split the data based on the chosen feature and split value 
left_split <- train_data[train_data[[feature]] <= split_value, ] 
right_split <- train_data[train_data[[feature]] > split_value, ] 
 
# Extract the target variable for parent and child nodes 
parent_values <- train_data$mpg 
left_values <- left_split$mpg 
right_values <- right_split$mpg 
 
# Calculate Variance Reduction 



variance_reduction <- calculate_variance_reduction(parent_values, left_values, right_values) 
 
# Calculate MSE Reduction 
mse_reduction <- calculate_mse_reduction(parent_values, left_values, right_values) 
 
# Print results 
cat("Variance Reduction:", variance_reduction, "\n") 
cat("MSE Reduction:", mse_reduction, "\n") 

 
In the case of the Gini Impurity index, lower values indicate better splits, but in the others, higher values 
indicate better splits. 
 
We can create a plot to visualize the results of the split. 
 

# Load ggplot2 for visualization 
library(ggplot2) 
 
# Create a data frame to plot 
plot_data <- data.frame( 
  mpg = train_data$mpg, 
  split = ifelse(train_data[[feature]] <= split_value, "Left Node", "Right Node") 
) 
 
# Plot histograms for each split 
ggplot(plot_data, aes(x = mpg, fill = split)) + 
  geom_histogram(position = "dodge", bins = 10, alpha = 0.7) + 
  labs(title = "Distribution of MPG in Left and Right Nodes", 
       x = "MPG", y = "Count") + 
  theme_minimal() 

 
 
Before we move on to the full decision tree algorithm, lets look at the stopping criteria options. 
 
In decision tree algorithms, stopping criteria are conditions that prevent the tree from growing 
indefinitely and help avoid overfitting. Common stopping criteria include: 

1. Maximum Depth: The tree is only allowed to grow to a certain depth. 
2. Minimum Number of Samples per Node: A node will only be split if it contains a minimum 

number of samples. 
3. Minimum Reduction in Impurity: A node will only be split if the reduction in impurity (e.g., 

variance reduction, MSE reduction) is above a certain threshold. 
4. Minimum Leaf Node Size: The leaf nodes should have at least a minimum number of samples. 



5. Early Stopping Based on Validation Error: If the validation error starts to increase, stop further 
splits. 

 
# Load the dataset 
data(mtcars) 
 
# Stopping criterion: Maximum Depth 
max_depth_criterion <- function(current_depth, max_depth) { 
  return(current_depth >= max_depth) 
} 
 
# Example Usage: 
current_depth <- 3 
max_depth <- 5 
cat("Should we stop? ", max_depth_criterion(current_depth, max_depth), "\n") 
 
# Stopping criterion: Minimum Number of Samples per Node 
min_samples_criterion <- function(node_samples, min_samples) { 
  return(length(node_samples) < min_samples) 
} 
 
# Example Usage: 
node_samples <- train_data$mpg 
min_samples <- 5 
cat("Should we stop? ", min_samples_criterion(node_samples, min_samples), "\n") 
 
# Stopping criterion: Minimum Reduction in Impurity 
min_impurity_criterion <- function(impurity_reduction, min_impurity_reduction) { 
  return(impurity_reduction < min_impurity_reduction) 
} 
 
# Example Usage: 
impurity_reduction <- 0.02 
min_impurity_reduction <- 0.05 
cat("Should we stop? ", min_impurity_criterion(impurity_reduction, min_impurity_reduction), "\n") 
 
# Stopping criterion: Minimum Leaf Node Size 
min_leaf_size_criterion <- function(left_node, right_node, min_leaf_size) { 
  return(length(left_node) < min_leaf_size || length(right_node) < min_leaf_size) 
} 
 
# Example Usage: 
left_node <- train_data$mpg[train_data$hp <= 100] 
right_node <- train_data$mpg[train_data$hp > 100] 
min_leaf_size <- 3 
cat("Should we stop? ", min_leaf_size_criterion(left_node, right_node, min_leaf_size), "\n") 
 
# Stopping criterion: Early Stopping Based on Validation Error 



early_stopping_criterion <- function(validation_errors) { 
  if (length(validation_errors) < 2) { 
    return(FALSE) 
  } 
  return(validation_errors[length(validation_errors)] > validation_errors[length(validation_errors) - 
1]) 
} 
 
# Example Usage: 
validation_errors <- c(0.3, 0.28, 0.27, 0.29)  # Example validation errors from previous splits 
cat("Should we stop? ", early_stopping_criterion(validation_errors), "\n") 
 

Now that we have all the pieces that can be customized, let’s look at the full decision tree algorithm to 
see how all the pieces fit together. 
 

#full classification algorithm 
# Load the iris dataset 
data(iris) 
 
# Calculate Gini Impurity 
gini_impurity <- function(labels) { 
  probs <- table(labels) / length(labels) 
  return(1 - sum(probs^2)) 
} 
 
# Calculate the mode (most common class) 
get_mode <- function(labels) { 
  return(names(sort(table(labels), decreasing = TRUE))[1]) 
} 
 
# Function to split the dataset 
split_dataset <- function(dataset, feature_index, threshold) { 
  left <- dataset[dataset[, feature_index] <= threshold, ] 
  right <- dataset[dataset[, feature_index] > threshold, ] 
  return(list(left = left, right = right)) 
} 
 
# Stopping criteria: max depth and minimum samples 
max_depth_criterion <- function(current_depth, max_depth) { 
  return(current_depth >= max_depth) 
} 
 
min_samples_criterion <- function(data, min_samples) { 
  return(nrow(data) < min_samples) 
} 
 
# Recursive function to build the tree 
build_tree <- function(data, current_depth = 0, max_depth = 5, min_samples = 5) { 



  labels <- data[, ncol(data)] 
   
  # Stopping criteria 
  if (max_depth_criterion(current_depth, max_depth) || min_samples_criterion(data, 
min_samples) || length(unique(labels)) == 1) { 
    return(list(leaf = TRUE, prediction = get_mode(labels))) 
  } 
   
  best_gain <- -Inf 
  best_split <- NULL 
   
  # Find the best split 
  for (feature_index in 1:(ncol(data) - 1)) { 
    unique_values <- unique(data[, feature_index]) 
     
    for (threshold in unique_values) { 
      splits <- split_dataset(data, feature_index, threshold) 
      left_labels <- splits$left[, ncol(splits$left)] 
      right_labels <- splits$right[, ncol(splits$right)] 
       
      # Skip if either split is empty 
      if (length(left_labels) == 0 || length(right_labels) == 0) { 
        next 
      } 
       
      # Compute the Gini Gain 
      gain <- gini_impurity(labels) -  
        (length(left_labels) / length(labels)) * gini_impurity(left_labels) -  
        (length(right_labels) / length(labels)) * gini_impurity(right_labels) 
       
      if (!is.na(gain) && gain > best_gain) { 
        best_gain <- gain 
        best_split <- list(feature_index = feature_index, threshold = threshold, left = splits$left, right 
= splits$right) 
      } 
    } 
  } 
   
  # If no good split found, return a leaf 
  if (is.null(best_split)) { 
    return(list(leaf = TRUE, prediction = get_mode(labels))) 
  } 
   
  # Recurse for the left and right branches 
  left_branch <- build_tree(best_split$left, current_depth + 1, max_depth, min_samples) 
  right_branch <- build_tree(best_split$right, current_depth + 1, max_depth, min_samples) 
   



  return(list(leaf = FALSE, feature_index = best_split$feature_index, threshold = 
best_split$threshold, left = left_branch, right = right_branch)) 
} 
 
# Predict using the tree 
predict_tree <- function(tree, sample) { 
  if (tree$leaf) { 
    return(tree$prediction) 
  } 
   
  if (sample[tree$feature_index] <= tree$threshold) { 
    return(predict_tree(tree$left, sample)) 
  } else { 
    return(predict_tree(tree$right, sample)) 
  } 
} 
 
# Train the tree 
tree <- build_tree(iris, max_depth = 4, min_samples = 5) 
 
# Predict on the entire dataset 
predictions <- sapply(1:nrow(iris), function(i) predict_tree(tree, iris[i, -ncol(iris)])) 
 
# Confusion Matrix 
table(Predicted = predictions, Actual = iris$Species) 

 
Visualizing a manually coded tree is more complicated than trees built from packages, so to visualize the 
tree itself, we’ll re-implement a similar tree using a package and then apply its built-in visualization tools 
to get an idea of what we have here. 
 

 
Now, let’s consider the full regression algorithm. 
 

#regression tree 
# Load the mtcars dataset 
data(mtcars) 
 
# Step 1: Define a function to calculate the Mean Squared Error (MSE) 
mse <- function(y) { 
  mean((y - mean(y))^2) 



} 
 
# Step 2: Define a function to calculate the variance reduction (gain) 
variance_reduction <- function(y, left_indices, right_indices) { 
  total_var = mse(y) 
  left_var = mse(y[left_indices]) 
  right_var = mse(y[right_indices]) 
  n = length(y) 
  left_weight = length(left_indices) / n 
  right_weight = length(right_indices) / n 
  reduction = total_var - (left_weight * left_var + right_weight * right_var) 
  return(reduction) 
} 
 
# Step 3: Define a function to find the best split 
find_best_split <- function(X, y) { 
  best_gain = -Inf 
  best_split = NULL 
   
  n_features = ncol(X) 
   
  for (feature in 1:n_features) { 
    feature_values = X[, feature] 
    possible_splits = unique(feature_values) 
     
    for (split_value in possible_splits) { 
      left_indices = which(feature_values <= split_value) 
      right_indices = which(feature_values > split_value) 
       
      if (length(left_indices) == 0 || length(right_indices) == 0) { 
        next  # Skip if any split has no data points 
      } 
       
      gain = variance_reduction(y, left_indices, right_indices) 
       
      # Ensure gain is not NA or NaN 
      if (is.na(gain) || is.nan(gain)) { 
        next  # Skip invalid gain values 
      } 
       
      if (gain > best_gain) { 
        best_gain = gain 
        best_split = list(feature = feature, value = split_value, left_indices = left_indices, 
right_indices = right_indices) 
      } 
    } 
  } 
   



  return(best_split) 
} 
 
# Step 4: Define a function to build the regression tree 
build_tree <- function(X, y, min_samples_split = 10, max_depth = 5, current_depth = 1) { 
  if (nrow(X) < min_samples_split || current_depth > max_depth) { 
    return(list(prediction = mean(y)))  # Return a leaf node with the mean value 
  } 
   
  split = find_best_split(X, y) 
   
  if (is.null(split)) { 
    return(list(prediction = mean(y)))  # Return a leaf node if no valid split is found 
  } 
   
  left_tree = build_tree(X[split$left_indices, , drop = FALSE], y[split$left_indices], 
min_samples_split, max_depth, current_depth + 1) 
  right_tree = build_tree(X[split$right_indices, , drop = FALSE], y[split$right_indices], 
min_samples_split, max_depth, current_depth + 1) 
   
  return(list( 
    feature = split$feature, 
    value = split$value, 
    left = left_tree, 
    right = right_tree 
  )) 
} 
 
# Step 5: Define a function to make predictions with the regression tree 
predict_tree <- function(tree, X) { 
  if (!is.null(tree$prediction)) { 
    return(tree$prediction) 
  } 
   
  feature_value = X[tree$feature] 
   
  if (feature_value <= tree$value) { 
    return(predict_tree(tree$left, X)) 
  } else { 
    return(predict_tree(tree$right, X)) 
  } 
} 
 
# Step 6: Example usage with the mtcars dataset 
set.seed(42) 
X <- as.matrix(mtcars[, c("wt", "qsec", "am")]) 
y <- mtcars$mpg 
 



# Build the tree 
regression_tree <- build_tree(X, y, min_samples_split = 5, max_depth = 4) 
 
# Make predictions 
predictions <- apply(X, 1, function(row) predict_tree(regression_tree, row)) 
 
# Print the predictions 
print(predictions) 
 
# Function to print the decision tree structure 
print_tree <- function(tree, indent = "") { 
  if (!is.null(tree$prediction)) { 
    cat(indent, "Prediction:", round(tree$prediction, 2), "\n") 
  } else { 
    cat(indent, "Feature", tree$feature, "<=", tree$value, "\n") 
    cat(indent, "Left:\n") 
    print_tree(tree$left, indent = paste0(indent, "  ")) 
    cat(indent, "Right:\n") 
    print_tree(tree$right, indent = paste0(indent, "  ")) 
  } 
} 
 
# Print the tree 
print_tree(regression_tree) 
 
# Visualize the predictions vs actual values 
library(ggplot2) 
 
# Create a data frame for the comparison 
results <- data.frame( 
  Actual = y, 
  Predicted = predictions 
) 
 
# Plot the results 
ggplot(results, aes(x = Actual, y = Predicted)) + 
  geom_point(color = "blue", size = 3) + 
  geom_abline(intercept = 0, slope = 1, color = "red", linetype = "dashed") + 
  labs(title = "Predicted vs Actual MPG", 
       x = "Actual MPG", 
       y = "Predicted MPG") + 
  theme_minimal() 
 



 
 
This code includes both a visualization of the predictions versus actual, and a printed (text) 
representation of the decision tree which prints to the console. 
 
Resources: 

1. https://scientistcafe.com/ids/splitting-criteria 
2. https://www.analyticsvidhya.com/blog/2020/06/4-ways-split-decision-tree/ 
3. https://www.geeksforgeeks.org/how-to-determine-the-best-split-in-decision-tree/ 
4. https://www.machinelearningnuggets.com/splitting-criteria-in-decision-trees/ 
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