
Lecture 15 
 
KNN Classification vs. Regression 
 
Differences Between KNN for Classification vs. Regression: 
 
Objective: 

• Classification: The objective of KNN in classification is to assign a class label to a new data point 
based on the majority class among its nearest neighbors. The output is a discrete class label. 

• Regression: The objective of KNN in regression is to predict a continuous value for a new data 
point based on the average (or weighted average) of the values of its nearest neighbors. The 
output is a continuous numerical value. 

 
Decision Rule: 

• Classification: The decision is based on the mode (most common value) among the nearest 
neighbors. If there's a tie, various tiebreaking methods can be employed, such as random 
selection, or using a weighted vote. 

• Regression: The decision is based on averaging the target values of the nearest neighbors. This 
can be a simple arithmetic mean or a weighted mean where closer neighbors have a higher 
influence. 

 
Metrics: 

• Classification: Performance metrics include accuracy, precision, recall, F1-score, confusion 
matrix, ROC curves, and AUC. 

• Regression: Performance metrics include mean squared error (MSE), mean absolute error (MAE), 
root mean squared error (RMSE), R-squared, and mean absolute percentage error (MAPE). 

 
Output Type: 

• Classification: Outputs are categorical. 
• Regression: Outputs are continuous numerical values. 

 
Pros and Cons of Using KNN for Regression: 
Pros: 

Simplicity: KNN is straightforward to understand and implement, making it accessible for those 
new to machine learning. It requires minimal assumptions about the underlying data 
distribution. 
 
Non-parametric: KNN is a non-parametric method, meaning it doesn't assume a specific form for 
the underlying data distribution or the relationship between the input and output variables. This 
makes it flexible and capable of modeling complex relationships. 
 
Adaptability: KNN can adapt to different types of data and can be easily customized by choosing 
different distance metrics, weighting schemes, and the number of neighbors (k). 
 
Local Approximation: KNN effectively captures local patterns in data, which can be beneficial 
when the relationship between variables varies in different parts of the feature space. 

 
 



Cons: 
Computational Cost: KNN can be computationally expensive, especially with large datasets. The 
algorithm needs to calculate distances to every point in the dataset for each prediction, which 
can be slow, especially when k is large. 
 
Curse of Dimensionality: In high-dimensional spaces, data points tend to become equidistant 
from each other, making distance-based methods like KNN less effective. The performance of 
KNN can degrade significantly as the number of features increases. 
 
Sensitivity to Noise: KNN can be sensitive to noisy data and outliers because each neighbor has 
an equal influence on the prediction. This can lead to poor predictions if the nearest neighbors 
are not representative of the actual trend. 
 
Choice of k: The performance of KNN is highly dependent on the choice of the parameter k. A 
small k can lead to overfitting, while a large k can lead to underfitting. There is no universal rule 
for choosing the best k, so it often requires tuning. 
 
Lack of Model Interpretability: Unlike linear regression, KNN does not provide an interpretable 
model. It does not give insights into the relationships between the features and the target 
variable, as it simply memorizes the training data. 
 
Boundary Effects: KNN can struggle near the boundaries of the data distribution, where there 
may be fewer neighbors to average. This can lead to less reliable predictions in those regions. 

 
You can use other methods to make the predictions from the nearest neighbors. The typical arithmetic 
mean is the most common. However, there are several other methods that can be used to make 
predictions in KNN regression. Here are some alternatives: 
 
Weighted Mean: 

• Description: Instead of giving each neighbor equal weight, you can give more weight to closer 
neighbors and less weight to farther ones. The weights are typically inversely related to the 
distance between the point and its neighbors. 

• Common Weighting Schemes: 
o Inverse Distance Weighting: The weight is the inverse of the distance (e.g., 𝑤𝑒𝑖𝑔ℎ𝑡𝑖 =

1

𝑑𝑖
, where 𝑑𝑖  is the distance to the 𝑖th neighbor). 

o Gaussian Kernel Weighting: The weight is computed using a Gaussian (or other kernel) 
function, where closer neighbors have exponentially more influence. 

• Advantages: This approach can make predictions more robust, especially when neighbors are 
unevenly distributed in the feature space. 

 
Median of Neighbors: 

• Description: Instead of taking the mean, you take the median of the target values of the k-
nearest neighbors. This can be useful in cases where the target variable contains outliers. 

• Advantages: The median is less sensitive to outliers than the mean, making it a good choice in 
noisy datasets. 

 
Mode (for integer target variables): 



• Description: If the target variable is a count or an integer value, the mode (most common value) 
among the k-nearest neighbors can be used. 

• Advantages: The mode is useful when you want to predict the most frequently occurring integer 
value, especially when your target variable is discrete but numeric. 

• Disadvantages: sometimes R has issues when calculated a mode for a numeric value, so this can 
present coding challenges, particularly if there is more than one mode, or if there is no mode. 

 
Trimmed Mean: 

• Description: This involves calculating the mean after discarding a certain percentage of the 
smallest and largest values among the neighbors. For example, a 10% trimmed mean would 
discard the top and bottom 10% of values and take the mean of the remaining 80%. 

• Advantages: This can help reduce the influence of extreme outliers on the prediction. 
 
Harmonic Mean: 

• Description: The harmonic mean is another way to average the values, which is particularly 
useful if the values you're predicting are rates or ratios. 

• Advantages: The harmonic mean gives less weight to large values, which can be beneficial in 
certain types of datasets. 

 
Quantile Prediction: 

• Description: Instead of predicting the mean or median, you could predict a specific quantile (e.g., 
the 25th or 75th percentile) of the target values of the k-nearest neighbors. 

• Advantages: Quantile regression can be useful when you are interested in predicting the range 
or distribution of the target variable, rather than just a central tendency. 

 
Local Polynomial Regression: 

• Description: Instead of taking a simple mean, you could fit a local polynomial regression (e.g., 
locally weighted scatterplot smoothing or LOWESS) to the k-nearest neighbors and use this to 
make the prediction. 

• Advantages: This method can capture more complex, non-linear relationships between the 
neighbors. 

 
Let’s compare the standard KNN classification algorithm to the standard KNN regression algorithm. We’ll 
start with the classification example. 
 

# Load necessary libraries 
library(datasets) 
 
# Load the Iris dataset 
data(iris) 
 
# Prepare the data by removing the Species column to separate features and labels 
iris_data <- iris[, -5] 
iris_labels <- iris[, 5] 
 
# Euclidean distance function 
euclidean_distance <- function(x, y) { 
  return(sqrt(sum((x - y)^2))) 



} 
 
# KNN classification function 
knn_classify <- function(train_data, train_labels, test_data, k = 3) { 
  predictions <- c() 
   
  for (i in 1:nrow(test_data)) { 
    # Calculate distances from the test point to all training points 
    distances <- apply(train_data, 1, function(row) euclidean_distance(row, test_data[i, ])) 
     
    # Sort the distances and get the indices of the k nearest neighbors 
    k_nearest_indices <- order(distances)[1:k] 
     
    # Get the labels of the k nearest neighbors 
    k_nearest_labels <- train_labels[k_nearest_indices] 
     
    # Determine the most common label (mode) among the k nearest neighbors 
    predicted_label <- names(sort(table(k_nearest_labels), decreasing = TRUE))[1] 
     
    # Append the prediction to the list of predictions 
    predictions <- c(predictions, predicted_label) 
  } 
   
  return(predictions) 
} 
 
# Split the data into training and testing sets (80/20 split) 
set.seed(123) # for reproducibility 
train_indices <- sample(1:nrow(iris_data), size = 0.8 * nrow(iris_data)) 
 
train_data <- iris_data[train_indices, ] 
train_labels <- iris_labels[train_indices] 
 
test_data <- iris_data[-train_indices, ] 
test_labels <- iris_labels[-train_indices] 
 
# Run the KNN classifier with k=3 
k <- 3 
predictions <- knn_classify(train_data, train_labels, test_data, k = k) 
 
# Calculate accuracy 
accuracy <- sum(predictions == test_labels) / length(test_labels) 
print(paste("Accuracy:", accuracy)) 
 
# Confusion matrix 
table(Predicted = predictions, Actual = test_labels) 

 
Now, the regression case. 



# Load the mtcars dataset 
data(mtcars) 
 
# Prepare the data by selecting features and the target variable 
mtcars_data <- mtcars[, c("disp", "hp", "wt")] 
mtcars_labels <- mtcars[, "mpg"] 
 
# Euclidean distance function (same as above) 
euclidean_distance <- function(x, y) { 
  return(sqrt(sum((x - y)^2))) 
} 
 
# KNN regression function 
knn_regress <- function(train_data, train_labels, test_data, k = 3) { 
  predictions <- c() 
   
  for (i in 1:nrow(test_data)) { 
    # Calculate distances from the test point to all training points 
    distances <- apply(train_data, 1, function(row) euclidean_distance(row, test_data[i, ])) 
     
    # Sort the distances and get the indices of the k nearest neighbors 
    k_nearest_indices <- order(distances)[1:k] 
     
    # Get the labels (mpg values) of the k nearest neighbors 
    k_nearest_labels <- train_labels[k_nearest_indices] 
     
    # Predict the mean of the k nearest labels 
    predicted_value <- mean(k_nearest_labels) 
     
    # Append the prediction to the list of predictions 
    predictions <- c(predictions, predicted_value) 
  } 
   
  return(predictions) 
} 
 
# Split the data into training and testing sets (80/20 split) 
set.seed(123) # for reproducibility 
train_indices <- sample(1:nrow(mtcars_data), size = 0.8 * nrow(mtcars_data)) 
 
train_data <- mtcars_data[train_indices, ] 
train_labels <- mtcars_labels[train_indices] 
 
test_data <- mtcars_data[-train_indices, ] 
test_labels <- mtcars_labels[-train_indices] 
 
# Run the KNN regressor with k=3 
k <- 3 



predictions <- knn_regress(train_data, train_labels, test_data, k = k) 
 
# Calculate Mean Absolute Error (MAE) 
mae <- mean(abs(predictions - test_labels)) 
print(paste("Mean Absolute Error (MAE):", mae)) 
 
# Plot predictions vs actual values 
plot(test_labels, predictions, xlab = "Actual MPG", ylab = "Predicted MPG", main = "KNN 
Regression") 
abline(0, 1, col = "red") # Reference line 

 

 
One way that we can compare the predictions of linear regression to the results of KNN regression is to 
plot the original points and the predictions for both on the same graph. 
 

# Step 1: Fit a Linear Regression Model 
linear_model <- lm(mpg ~ disp + hp + wt, data = mtcars) 
 
# Step 2: Generate Predictions from the Linear Regression Model 
linear_predictions <- predict(linear_model, newdata = test_data) 
 
# Step 3: Generate Predictions from the KNN Regression Model (using k=3 as before) 
k <- 3 
knn_predictions <- knn_regress(train_data, train_labels, test_data, k = k) 
 
# Step 4: Create a Comparison Plot 
plot(test_labels, linear_predictions, col = "blue", pch = 16, 
     xlab = "Actual MPG", ylab = "Predicted MPG", 
     main = "Comparison of Linear Regression and KNN Predictions") 
points(test_labels, knn_predictions, col = "red", pch = 16) 
 
# Add a legend 
legend("topleft", legend = c("Linear Regression", "KNN Regression"), 
       col = c("blue", "red"), pch = 16) 
 
# Add a reference line for perfect prediction 
abline(0, 1, col = "black", lty = 2) 

 



 
 
You can see that the predictions are often similar, but not always on the same side of the perfect-fit line. 
 
We’ll see as we look at more classification methods that use this voting strategy that we used in KNN 
that they can also be modified to perform regression in similar ways. We’ll look at decision trees next, 
and we’ll include an example or two in that discussion of the regression vs. classification treatment in 
that model as well, particularly when we look at ensemble methods. 
 
 
Resources:  

1. https://towardsdatascience.com/the-basics-knn-for-classification-and-regression-c1e8a6c955 
 

https://towardsdatascience.com/the-basics-knn-for-classification-and-regression-c1e8a6c955

