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Derivatives of vector-valued functions and parametric equations – first derivatives, second derivatives, 
vertical and horizontal tangents, concavity 
Tangent vectors/tangent lines 
Area under a parametric curve 
Arc length 
Surface area of a volume of solid of revolution in parametric form 
 
We can represent functions or relations in x and y with a set of parametric equations as 𝑥(𝑡) and 𝑦(𝑡), or 
as a vector-valued function: 𝑟(𝑡) = 〈𝑥(𝑡), 𝑦(𝑡)〉. 
 
Calculus on vector-valued functions: 
Almost everything is done component by component. 

If I want to find 
𝑑𝑟

𝑑𝑡
= 𝑟′(𝑡) = 〈

𝑑𝑥

𝑑𝑡
,

𝑑𝑦

𝑑𝑡
〉 = 〈𝑥′(𝑡), 𝑦′(𝑡)〉 

 
The derivative of a vector-valued function gives you the tangent vector to a curve. If you evaluate it at a 
point, it gives you the tangent vector at that point. 
 
Example. 

𝑟(𝑡) = 〈𝑡 + 2, 𝑡2 − 1〉 
𝑟′(𝑡) = 〈1,2𝑡〉 

 
If we want to find the tangent vector at some point, evaluate the derivative at that point. 

𝑟′(1) = 〈1,2〉 
 

Slope is equivalent to the tangent: tan(𝜃) =
𝑦

𝑥
→ tan 𝜃 = 𝑚 =

Δ𝑦

Δ𝑥
=

2

1
= 2 

 
The slope of the tangent line at the point t=1 is 2. 

The slope of the tangent at any point t, for any function 𝑟, is 
𝑑𝑦

𝑑𝑡
𝑑𝑥

𝑑𝑡

=
𝑑𝑦

𝑑𝑥
. This is a relationship that also 

applied to parametric equations. 
 

If I want to write the equation of the slope in regular cartesian form, then I find 
𝑑𝑦

𝑑𝑥
 (the slope), and find 

the point the parametric curve is passing through, and then do the usual algebra. 
 

𝑟(1) = 〈3,0〉 
𝑦 − 0 = 2(𝑥 − 3) 

𝑦 = 2𝑥 − 6 
 
 
But, I can also write the tangent in parametric or vector form: 
 

𝑇𝑎𝑛𝑔𝑒𝑛𝑡(𝑡) = 𝑡〈𝑥′(𝑡), 𝑦′(𝑡)〉 + 〈𝑥0, 𝑦0〉 = 〈Δ𝑥(𝑡) + 𝑥0, Δ𝑦(𝑡) + 𝑦0〉 

 
𝑡〈1,2〉 + 〈3,0〉 = 〈𝑡 + 3,2𝑡〉 



 
𝑥 = 𝑡 + 3, 𝑦 = 2𝑡 

 
Derivatives of parametric functions: 
 

𝑥(𝑡) = 𝑡3, 𝑦(𝑡) = 𝑡2 − 1 
 

Find 
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑡
𝑑𝑥

𝑑𝑡

 

 
𝑑𝑥

𝑑𝑡
= 𝑥′(𝑡) = 3𝑡2,

𝑑𝑦

𝑑𝑡
= 𝑦′(𝑡) = 2𝑡 

 
𝑑𝑦

𝑑𝑥
=

2𝑡

3𝑡2
=

2

3𝑡
 

 
 

𝑥 = 𝑡3 → 𝑡 = √𝑥
3

 
 

𝑦(𝑥) = √𝑥23
− 1 = 𝑥

2
3 − 1 

 

𝑦′(𝑥) =
𝑑𝑦

𝑑𝑥
=

2

3
𝑥−

1
3 =

2

3√𝑥
3 =

2

3𝑡
 

 
 
Second derivative: 

𝑑

𝑑𝑥
(

𝑑𝑦

𝑑𝑥
) =

𝑑
𝑑𝑡
𝑑𝑥
𝑑𝑡

(

𝑑𝑦
𝑑𝑡
𝑑𝑥
𝑑𝑡

) =

𝑑2𝑦
𝑑𝑡2

(
𝑑𝑥
𝑑𝑡

)
2 =

1

𝑑𝑥
𝑑𝑡

×
𝑑

𝑑𝑡
(

𝑑𝑦

𝑑𝑥
) 

 
Example. 

Starting from 𝑥(𝑡) = 𝑡3, 𝑦(𝑡) = 𝑡2 − 1,
𝑑𝑦

𝑑𝑥
=

2

3𝑡
, find the second derivative, i.e. 

𝑑2𝑦

𝑑𝑥2 

 
𝑑

𝑑𝑡
(

𝑑𝑦

𝑑𝑥
) =

𝑑

𝑑𝑡
(

2

3
𝑡−1) =

2

3
(−1)𝑡−2 = −

2

3𝑡2
 

 
𝑑2𝑦

𝑑𝑥2
=

1

3𝑡2
× (−

2

3𝑡2
) = −

2

9𝑡4
 

 
Verify that this makes sense from the cartesian results. 

𝑑𝑦

𝑑𝑥
=

2

3
𝑥−

1
3 

 
𝑑2𝑦

𝑑𝑥2
= 𝑦′′(𝑥) =

2

3
(−

1

3
) 𝑥−

4
3 = −

2

9√𝑥43 = −
2

9𝑡4
 

 



Vertical and Horizontal tangents: 
Horizontal tangents are when the slope of the tangent line is equal to 0. 

𝑑𝑦

𝑑𝑥
=

𝑑𝑦
𝑑𝑡
𝑑𝑥
𝑑𝑡

 

 

This implies that we get horizontal tangents when 
𝑑𝑦

𝑑𝑡
= 0. 

 
𝑟(𝑡) = 〈𝑡 + 2, 𝑡2 − 1〉 

 
𝑟′(𝑡) = 〈1,2𝑡〉 

We will get a horizontal tangent when 2𝑡 = 0, 𝑜𝑟 𝑡 = 0. 
 

Vertical tangents happen when the derivative 
𝑑𝑦

𝑑𝑥
 is undefined, or 

𝑑𝑥

𝑑𝑡
= 0 

 

𝑥(𝑡) = 𝑡3, 𝑦(𝑡) = 𝑡2 − 1,
𝑑𝑦

𝑑𝑥
=

2

3𝑡
 

 
𝑑𝑥

𝑑𝑡
= 3𝑡2 → 3𝑡2 = 0, 𝑡 = 0 

 
If the t had canceled in the denominator rather than the numerator, you’d have a hole in the derivative, 
and still could represent a point of vertical tangency or a cusp 
 

 
You can also get vertical tangents when you have a vertical asymptote. Or if you have a relation like a 
circle. 
 
Second derivatives can give us concavity. First derivatives can tell us where the graph is increasing or 
decreasing. 
 

𝑑𝑦

𝑑𝑥
=

2

3𝑡
,
𝑑2𝑦

𝑑𝑥2
= −

2

9𝑡4
 

 
Critical point at 𝑡 = 0. When t>0, the derivative is also positive, so the function is increasing. When t<0, 
the derivative is negative, and so the function is decreasing. 
 



For the second derivative, this is always negative. That means concave down. Where the second 
derivative is zero is a possible inflection point. 
 
For what it’s worth, limits, summations, integration, etc…. apply term-by-term to vector-valued 
functions. 
 
Recall that the first derivative is like velocity, and so the magnitude of the velocity is speed: ‖𝑟′(𝑡)‖ =

√[𝑥′(𝑡)]2 + [𝑦′(𝑡)]2. 
 
Area under a parametric curve. 
 

In rectangular coordinates: 𝐴 = ∫ 𝑦(𝑥)𝑑𝑥
𝑏

𝑎
 

To parametric form: 
 

𝐴 = ∫ 𝑦(𝑡)
𝑑𝑥

𝑑𝑡
 𝑑𝑡

𝑡1

𝑡0

= ∫ 𝑦(𝑡)𝑥′(𝑡) 𝑑𝑡
𝑡1

𝑡0

 

 
Example. Find the area under the curve defined by the parametric equations 𝑥(𝑡) = 𝑡3, 𝑦(𝑡) = 𝑡2 − 1, 
on the interval [1,8] (these are values in t not x) 
 

𝐴 = ∫ (𝑡2 − 1)(3𝑡2)𝑑𝑡
8

1

= ∫ 3𝑡4 − 3𝑡2𝑑𝑡
8

1

=
3

5
𝑡5 − 𝑡3|

1

8

= 19,660.8 − 512 −
3

5
+ 1 = 19,149.2 

 
Arc length of a parametric curve 

𝑠 = ∫ √[𝑥′(𝑡)]2 + [𝑦′(𝑡)]2𝑑𝑡
𝑏

𝑎

= ∫ ‖𝑟′(𝑡)‖
𝑏

𝑎

𝑑𝑡 

 
𝑟(𝑡) = 〈𝑡 + 2, 𝑡2 − 1〉 

 
Find the length of arc of the vector-valued function (parametric function) on the interval [−1,2] 
 

𝑠 = ∫ √[1]2 + [2𝑡]2𝑑𝑡
2

−1

= ∫ √1 + 4𝑡2
2

−1

𝑑𝑡 ≈ 6.1257 … 

 
Example. 

𝑥(𝑡) = 𝑡3, 𝑦(𝑡) = 𝑡2 − 1 
 

𝑠 = ∫ √(3𝑡2)2 + (2𝑡)2𝑑𝑡
𝑏

𝑎

= ∫ √9𝑡4 + 4𝑡2𝑑𝑡
𝑏

𝑎

= ∫ √𝑡2(9𝑡2 + 4)𝑑𝑡
𝑏

𝑎

= ∫ 𝑡√9𝑡2 + 4𝑑𝑡
𝑏

𝑎

 

 
This I could evaluate with regular u-sub and not need trig sub. 
 
Surface of revolution 
 

𝑆 = 2𝜋 ∫ 𝑟(𝑥)√1 + [𝑓′(𝑥)]2𝑑𝑥
𝑏

𝑎

 



 
In parametric form: 
 

𝑆 = 2𝜋 ∫ 𝑅(𝑡)√[𝑥′(𝑡)]2 + [𝑦′(𝑡)]2𝑑𝑡
𝑏

𝑎

= 2𝜋 ∫ 𝑅(𝑡)‖𝑟′(𝑡)‖𝑑𝑡
𝑏

𝑎

 

 
Recall that when we rotated around the x-axis, the 𝑟(𝑥) function was 𝑦(𝑥), but if we rotate around the 
y-axis, then the 𝑟(𝑥) = 𝑥. 
 
So in parametric form, if we rotate around the x-axis, then 𝑅(𝑡) = 𝑦(𝑡), but if we rotate around the y-
axis, then the 𝑅(𝑡) = 𝑥(𝑡). 
 
Example. 
Rotate the parametric equations 𝑥(𝑡) = 𝑡3, 𝑦(𝑡) = 𝑡2 − 1 around the x-axis. What is the surface area of 
revolution between [1,3]? 
 

𝑆 = 2𝜋 ∫ (𝑡2 − 1)√(3𝑡2)2 + (2𝑡)2𝑑𝑡
3

1

 

 
What if I rotated the function around the y-axis? What is the surface area of revolution? 
 

𝑆 = 2𝜋 ∫ 𝑡3√(3𝑡2)2 + (2𝑡)2𝑑𝑡
3

1

 

 
You can integrate them numerically from here. 
 
On Tuesday, we will start talking about polar coordinates. 


