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Power Series: Convergence, Intervals, Radii 
Writing Functions as Power Series: geometric series, center (completing the square, recentering), 
integration, derivatives 
 
Power Series 
Infinite series that involve powers of x or (x-c) 
 

∑
2𝑛𝑥𝑛

𝑛!

∞

𝑛=0

 

 
Does the power series converge and if so, for what values of x does it converge? 
 
Generally, use the ratio test to obtain a condition on convergence. 
 

lim
𝑛→∞

|
2𝑛+1𝑥𝑛+1

(𝑛 + 1)!
×

𝑛!

2𝑛𝑥𝑛
| = lim

𝑛→∞
|

2𝑥

𝑛 + 1
| = 0 < 1 

 
Since our ratio test left us with a condition that does not depend on x, we can say that the power series 
converges for all real numbers. 
 
Interval of convergence, and in this case, the interval of convergence is (−∞, ∞).  Related to that is the 
radius of convergence: the distance from the center to either end of the interval, or half the length of 
the interval. 
 
In general, if the interval of convergence is (𝑎, 𝑏) (closed or half-closed intervals are treated the same), 

then the radius of convergence is 
𝑏−𝑎

2
.  So, here the radius is ∞. 

 
Consider 

∑
𝑛𝑥𝑛

3𝑛

∞

𝑛=1

 

 
What is the interval of convergence? What is the radius of convergence? 
 

lim
𝑛→∞

|
(𝑛 + 1)𝑥𝑛+1

3𝑛+1
×

3𝑛

𝑛𝑥𝑛
| =  lim

𝑛→∞
|
𝑛 + 1

𝑛
×

𝑥

3
| = lim

𝑛→∞
|
𝑛 + 1

𝑛
| × lim

𝑛→∞
|
𝑥

3
| = (1) |

𝑥

3
| < 1 

 

|
𝑥

3
| < 1 

 

−1 <
𝑥

3
< 1  

 
−3 < 𝑥 < 3 

 



If the interval is finite, then check both endpoints to see if either or both should be included. 
 
Checking 𝑥 = −3 
 

∑
𝑛𝑥𝑛

3𝑛

∞

𝑛=1

→ ∑
𝑛(−3)𝑛

3𝑛

∞

𝑛=1

= ∑
𝑛(−1)𝑛3𝑛

3𝑛

∞

𝑛=1

= ∑(−1)𝑛𝑛

∞

𝑛=1

 

 
Diverges by the divergence test since the limit of n is not 0. 
 
Checking 𝑥 = 3 

∑
𝑛𝑥𝑛

3𝑛

∞

𝑛=1

→ ∑
𝑛(3)𝑛

3𝑛

∞

𝑛=1

= ∑ 𝑛

∞

𝑛=1

 

 
This also diverges by the divergence test. 
 
The interval of convergence is indeed (−3,3). 
 

The radius of convergence is 
3−(−3)

2
=

6

2
= 3 

 
Compare with  

∑
𝑥𝑛

𝑛3𝑛

∞

𝑛=1

 𝑜𝑟 ∑
𝑥𝑛

𝑛23𝑛

∞

𝑛=1

 

 
 

lim
𝑛→∞

|
𝑥𝑛+1

(𝑛 + 1)3𝑛+1
×

𝑛3𝑛

𝑥𝑛
| =  lim

𝑛→∞
|

𝑛

𝑛 + 1
×

𝑥

3
| = lim

𝑛→∞
|

𝑛

𝑛 + 1
| × lim

𝑛→∞
|
𝑥

3
| = (1) |

𝑥

3
| < 1 

 

|
𝑥

3
| < 1 

 

−1 <
𝑥

3
< 1  

 
−3 < 𝑥 < 3 

 
 
Checking 𝑥 = −3 
 

∑
𝑥𝑛

𝑛3𝑛

∞

𝑛=1

→ ∑
(−3)𝑛

𝑛3𝑛

∞

𝑛=1

= ∑
(−1)𝑛3𝑛

𝑛3𝑛

∞

𝑛=1

= ∑
(−1)𝑛

𝑛

∞

𝑛=1

  

 
This is the alternating harmonic series. Since the limit of 1/n goes to 0, this endpoint converges. 
 
Checking 𝑥 = 3 
 



∑
𝑥𝑛

𝑛3𝑛

∞

𝑛=1

→ ∑
(3)𝑛

𝑛3𝑛

∞

𝑛=1

= ∑
1

𝑛

∞

𝑛=1

  

 
This endpoint diverges by the p-series test. 
 
My interval of convergence is [−3,3) 
 
The radius of convergence is still R=3. 
 

Vs.  ∑
𝑥𝑛

𝑛23𝑛
∞
𝑛=1  

 

lim
𝑛→∞

|
𝑥𝑛+1

(𝑛 + 1)23𝑛+1
×

𝑛23𝑛

𝑥𝑛
| =  lim

𝑛→∞
|

𝑛2

(𝑛 + 1)2
×

𝑥

3
| = lim

𝑛→∞
|

𝑛

𝑛 + 1
|

2

× lim
𝑛→∞

|
𝑥

3
| = (1)2 |

𝑥

3
| < 1 

 

|
𝑥

3
| < 1 

 

−1 <
𝑥

3
< 1  

 
−3 < 𝑥 < 3 

 
 
Checking 𝑥 = −3 
 

∑
𝑥𝑛

𝑛23𝑛

∞

𝑛=1

→ ∑
(−3)𝑛

𝑛23𝑛

∞

𝑛=1

= ∑
(−1)𝑛3𝑛

𝑛23𝑛

∞

𝑛=1

= ∑
(−1)𝑛

𝑛2

∞

𝑛=1

  

 

This is the alternating p-series. Since the limit of 
1

𝑛2  goes to 0, this endpoint converges. 

 
Checking 𝑥 = 3 
 

∑
𝑥𝑛

𝑛23𝑛

∞

𝑛=1

→ ∑
(3)𝑛

𝑛23𝑛

∞

𝑛=1

= ∑
1

𝑛2

∞

𝑛=1

  

 
This endpoint converges by the p-series test. 
 
My interval of convergence is [−3,3] 
 
The radius of convergence is still R=3. 
 
Power series may also only converge at a single point. 
 

∑
𝑛! 𝑥𝑛

10𝑛

∞

𝑛=1

 



 

lim
𝑛→∞

|
(𝑛 + 1)! 𝑥𝑛+1

10𝑛+1
×

10𝑛

𝑛! 𝑥𝑛
| = lim

𝑛→∞
|
(𝑛 + 1)𝑥

10
| = ∞ 

 
Unless 𝑥 = 0.  
 
When 𝑥 = 0, then every term in the series is zero, and so the sum is zero. This will diverge everywhere 
except when x=0. 
 
Interval of convergence is {0}, and the radius of convergence is also 0. 
 
Example of center not at 0. 
 

∑
(𝑥 − 2)𝑛

6𝑛

∞

𝑛=0

 

 

lim
𝑛→∞

|
(𝑥 − 2)𝑛+1

6𝑛+1
× (

6𝑛

(𝑥 − 2)𝑛)| = lim
𝑛→∞

|
𝑥 − 2

6
| < 1 

 

|
𝑥 − 2

6
| < 1 

 

−1 <
𝑥 − 2

6
< 1 

 
−6 < 𝑥 − 2 < 6 

 
−4 < 𝑥 < 8 

 
Checking 𝑥 = −4 
 

∑
(𝑥 − 2)𝑛

6𝑛

∞

𝑛=0

→ ∑
(−4 − 2)𝑛

6𝑛

∞

𝑛=0

= ∑
(−6)𝑛

6𝑛

∞

𝑛=0

= ∑(−1)𝑛

∞

𝑛=0

 

 
Diverges by divergence test 
 
 
Checking 𝑥 = 8 
 

∑
(𝑥 − 2)𝑛

6𝑛

∞

𝑛=0

→ ∑
(8 − 2)𝑛

6𝑛

∞

𝑛=0

= ∑
(6)𝑛

6𝑛

∞

𝑛=0

= ∑ 1

∞

𝑛=0

 

Diverges by the divergence test 
 

So the interval of convergence is (−4,8). And the radius of convergence 𝑅 =
8−(−4)

2
=

12

2
= 6 

 



Write functions as power series 
Recall the geometric series 
 

∑ 𝑎𝑟𝑛

∞

𝑛=0

=
𝑎

1 − 𝑟
 

 
When the series converges. 
 
We can turn this into a power series formula by replacing r with x, or more generally, g(x). 
 

∑ 𝑎𝑥𝑛

∞

𝑛=0

=
𝑎

1 − 𝑥
 

 

Consider the function 𝑓(𝑥) =
2𝑥

1−𝑥
.  In this situation 𝑟 = 𝑥, 𝑎 = 2𝑥 

 

2𝑥

1 − 𝑥
= ∑(2𝑥)(𝑥)𝑛

∞

𝑛=0

= ∑ 2𝑥𝑛+1

∞

𝑛=0

 

 
Interval of convergence: 

lim
𝑛→∞

|
2𝑥𝑛+2

2𝑥𝑛+1
| = lim

𝑛→∞
|𝑥| < 1 

(−1,1) 
Radius of convergence is 1. 
 
Example. 

𝑓(𝑥) =
4

3 − 2𝑥
 

 
Write a power series for this function. (unless otherwise specified, the center is at x=0) 
Step 1: turn the constant in the denominator into a 1 
 

𝑓(𝑥) =
4

3 − 2𝑥
×

1
3
1
3

=
(

4
3)

1 −
2
3 𝑥

 

 

𝑟 =
2

3
𝑥, 𝑎 =

4

3
 

 

∑ (
4

3
) (

2

3
𝑥)

𝑛∞

𝑛=0

= ∑ (
4

3
) (

2

3
)

𝑛

𝑥𝑛

∞

𝑛=0

= ∑
222𝑛𝑥𝑛

3(3𝑛)

∞

𝑛=0

= ∑
2𝑛+2𝑥𝑛

3𝑛+1

∞

𝑛=0

 

 
 

Find a power series for the function 𝑓(𝑥) =
3

1−2𝑥
 centered at x=4 

 



Rewrite 1-2x in the form of a-b(x-4) 
 

1 − 2𝑥 = 𝑎 − 𝑏(𝑥 − 4) = 𝑎 − 𝑏𝑥 + 4𝑏 
 

−𝑏 = −2, 𝑏 = 2 
 

𝑎 + 4𝑏 = 1, 𝑎 + 4(2) = 1, 𝑎 + 8 = 1, 𝑎 = −7 
 

−7 − 2(𝑥 − 4) = −7 − 2𝑥 + 8 = 1 − 2𝑥 
 

𝑓(𝑥) =
3

−7 − 2(𝑥 − 4)
×

(−
1
7

)

(−
1
7)

=
−

3
7

1 +
2
7

(𝑥 − 4)
=

−
3
7

1 − [−
2
7

(𝑥 − 4)]
 

 

𝑟 = −
2

7
(𝑥 − 4), 𝑎 = −

3

7
 

 

∑ −
3

7
(−

2

7
(𝑥 − 4))

𝑛∞

𝑛=0

= ∑ −
3

7
(−

2

7
)

𝑛

(𝑥 − 4)𝑛

∞

𝑛=0

= ∑
3(−1)𝑛+12𝑛(𝑥 − 4)𝑛

7𝑛+1

∞

𝑛=0

 

 
If you have x anywhere in the expression, those also have to be shifted to be of the form (x-c) like the 
denominator. 
 
Two functions have rational expressions as their derivatives: 
 

𝑑

𝑑𝑥
[ln 𝑥] =

1

𝑥
 

 
𝑑

𝑑𝑥
[arctan 𝑥] =

1

1 + 𝑥2
 

 
To do natural log is similar to arctangent except that you need to shift the center from 0, since neither 
the function nor the derivative is defined there. Typically, the shift is to center at x=1. 
 

You would find a power series for 
1

𝑥−1+1
=

1

1+(𝑥−1)
, 𝑟 = −(𝑥 − 1), 𝑎 = 1 

 

For arctangent, start with 𝑓′(𝑥) =
1

1+𝑥2 , 𝑟 = −𝑥2, 𝑎 = 1 

 

𝑓′(𝑥) = ∑(−𝑥2)𝑛

∞

𝑛=0

= ∑(−1)𝑛𝑥2𝑛

∞

𝑛=0

 

 
Find the antiderivative to get back to the original arctangent function 
 

∫ ∑(−1)𝑛𝑥2𝑛

∞

𝑛=0

𝑑𝑥 = ∑(−1)𝑛 ∫ 𝑥2𝑛𝑑𝑥

∞

𝑛=0

= ∑
(−1)𝑛𝑥2𝑛+1

2𝑛 + 1

∞

𝑛=0

 



 

This is the power series for arctan 𝑥 = ∑
(−1)𝑛𝑥2𝑛+1

2𝑛+1
∞
𝑛=0  

 
 

Consider the function 𝑓(𝑥) =
1

𝑥2+6𝑥+13
 

There is a tendency for students to rewrite this as 
1

13+6𝑥+𝑥2 and divide everything by 13 to get 
1

13

1+
6

13
𝑥+

𝑥2

13

 

Then try to say 𝑟 = (−
6

13
𝑥 −

𝑥2

13
) , 𝑎 =

1

13
 

 
You can’t do this. The expression for r must be of the form 𝑘𝑥𝑝  or 𝑘(𝑥 − 𝑐). 
 
They can’t have multiple x’s. 
 
The way to tackle this kind of problem instead is to complete the square. 
 

1

𝑥2 + 6𝑥 + 13
=

1

𝑥2 + 6𝑥 + 9 + 4
=

1

4 + (𝑥 + 3)2
 

 
This expression is centered naturally at x= -3.  
 
Derivatives of the power series formula. 
 

𝑎(1 − 𝑟)−1 =
𝑎

1 − 𝑟
= ∑ 𝑎𝑟𝑛

∞

𝑛=0

 

 
Take a derivative, get a new formula. (with respect to r) 
 

𝑎(1 − 𝑟)−2(−1)(−1) = 𝑎(1 − 𝑟)−2 =
𝑎

(1 − 𝑟)2
= ∑ 𝑎𝑛𝑟𝑛−1

∞

𝑛=1

= ∑ 𝑎(𝑛 + 1)𝑟𝑛

∞

𝑛=0

 

 

𝑎

(1 − 𝑟)2
= ∑ 𝑎(𝑛 + 1)𝑟𝑛

∞

𝑛=0

 

 

𝑓(𝑥) =
𝑥4

(1 − 3𝑥)2
= ∑ 𝑥4(3𝑥)𝑛(𝑛 + 1) 

∞

𝑛=0

= ∑(𝑛 + 1)3𝑛𝑥𝑛+4

∞

𝑛=0

 

 
 
Another derivative: 
 

𝑎(1 − 𝑟)−2 =
𝑎

(1 − 𝑟)2
= ∑ 𝑎𝑛𝑟𝑛−1

∞

𝑛=1

 

 



𝑎(−2)(1 − 𝑟)−3(−1) =
2𝑎

(1 − 𝑟)3
= ∑ 𝑎𝑛(𝑛 − 1)𝑟𝑛−2

∞

𝑛=2

= ∑ 𝑎(𝑛 + 2)(𝑛 + 1)𝑟𝑛

∞

𝑛=0

 

 

𝑓(𝑥) =
𝑥2

(5 − 4𝑥)3
×

1
53

1
53

=
(

𝑥2

125
)

(1 −
4
5

𝑥)
3 , 𝑟 =

4

5
𝑥, 𝑎 =

1

125
𝑥2 

 

∑ (
1

125
) 𝑥2(𝑛 + 2)(𝑛 + 1) (

4

5
𝑥)

𝑛∞

𝑛=0

= ∑
(𝑛 + 2)(𝑛 + 1)4𝑛𝑥𝑛+2

5𝑛+3

∞

𝑛=0

 

 
 
And of course, you can keep going. 
 
Next time we will start talking about Taylor Series (Maclaurin series) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


