
Lecture 16 
 
Three-Way ANOVA 
Three-way ANOVA follows much the same pattern as two-way ANOVA. There are direct effects of each 
component, each with its own set of hypothesis tests. There are two-way effects that are possible from 
pairs of treatments, and there is a possible three-way effect from all three factors interacting with each 
other.  Each type of interaction has its set of hypotheses to test, and typically we start with the most 
complex interaction and work our way down to the primary effects. As we introduce more variables into 
our model, we can run into other types of issues.  Factors may influence each other.  One set of factors 
may prove not to be independent of another factor, so we may see that alone two factors may each 
prove to have predictive power, but together one or both may end up no longer able to reject the null 
hypothesis. It is quite rare for higher level interaction terms to survive. As with two-way ANOVA, 
however, sometimes the interaction term will survive without the main effects term, which may create 
issues with interpretation of the model (this is uncommon). 
 
As with our previous ANOVA models, we aren’t going to compute these by hand, but it’s worth seeing 
how the analysis develops and expands to account to the various effects and interactions. 
 

 
 
The notation in our text (Devore) uses gamma for the interaction terms as it did in the two-way model 
case, leaving delta for the third primary effect (if you know Greek, you know this is out-of-order now). 
Some sources will use gamma as the third primary effect, and may use multiple letters for the 
interaction effects going down the line.  The subscripts here really tell us what is going on.  The primary 
effects have only one subscript referring to each of the main treatment variables. The combination 
effects have pairs or triples of subscripts that correspond to the combination of main effects at play. 
Devore further adds subscripts to clarify which factor variables are involved (when 𝑖 and 𝑗 and 𝑘 are 
replaced with specific values, this helps to disambiguate). And then the error term 𝜖𝑖𝑗𝑘𝑙 is the random 

error on each measurement with mean of zero and standard deviation of 𝜎. 
 

 
 



This list doesn’t include the SSAC and SSBC sum of squares, but they can be generalized from the SSAB 
equation. 
 

 
 
Reminder that these are examples. For the full three-way model, we have three main effect hypotheses, 
three two-way interactions and one three-way interaction: 7 hypotheses to test. 
 
A full ANOVA table for this type of model will have to fill in as follows.  These formulas assume the 
sample size is the same for all components, but recall that we made some adjustments to account for 
different sample sizes in the various treatment combinations and similar adjustments can be made here. 
As our models become more complex, it becomes increasingly common to have only one observation in 
each treatment combination (or less). 
 

SOURCE OF VARIATION DF SUM OF SQUARES MEAN SQUARE F 

A 𝐼 − 1 𝑆𝑆𝐴 𝑀𝑆𝐴 𝐹𝐴 
B 𝐽 − 1 𝑆𝑆𝐵 𝑀𝑆𝐵 𝐹𝐵 
C 𝐾 − 1 𝑆𝑆𝐶 𝑀𝑆𝐶 𝐹𝐶  
AB (𝐼 − 1)(𝐽 − 1) 𝑆𝑆𝐴𝐵 𝑀𝑆𝐴𝐵 𝐹𝐴𝐵 
AC (𝐼 − 1)(𝐾 − 1) 𝑆𝑆𝐴𝐶 𝑀𝑆𝐴𝐶 𝐹𝐴𝐶  
BC (𝐽 − 1)(𝐾 − 1) 𝑆𝑆𝐵𝐶 𝑀𝑆𝐵𝐶 𝐹𝐵𝐶  
ABC (𝐼 − 1)(𝐽 − 1)(𝐾 − 1) 𝑆𝑆𝐴𝐵𝐶 𝑀𝑆𝐴𝐵𝐶 𝐹𝐴𝐵𝐶  
ERROR 𝐼𝐽𝐾(𝐿 − 1) 𝑆𝑆𝐸 𝑀𝑆𝐸  
TOTAL 𝐼𝐽𝐾𝐿 − 1 𝑆𝑆𝑇   

 
 
An example of a three-way model in R using the mtcars data set using the factors gear, am and carb to 
predict mpg. 
 

 
 
However, if we remove the interaction term, all the variable become signficant. 



 
 
As we noted, the full model of all possible interactions is quite complex, and we would need a complete 
layout (at least one observation for all conditions) in order to detect those effects which often do not 
rise to the level of significance.  We can limit our model to just main effects and then we don’t have to 
collect quite as much data. We can carefully chose the combinations of factors to measure. These are 
called incomplete layouts. They don’t have the power to test interactions, but they are more efficient, 
especially as we continue to add more variables with more treatment levels. 
 
The Latin Squares design is the most popular incomplete layout design. It depends on all the factor 
variables having the same number of levels. 
 

 
 
The idea is somewhat like sudoku.  Each row and each column should have one observation for the third 
factor in it.  Like sudoku, the number of combinations increases as the number of levels increases (there 
are 12 3 × 3 Latin squares).  This means that the number of observations extends like 𝑁2 instead of 𝑁3. 
For 5 levels, you’d need 25 observations, rather than 125. 
 
Because the design is very regular, and we don’t have to worry about interactions, the model 
calculations simplify. 
 

 



And we can apply Tukey’s method to see where the differences in the means are and how they might be 
grouped if at all. 
 

 
 
While a Latin square design is extremely common, there are alternatives, such as a Greco-Roman design 
model. Linked in the references is an article on Latin square models and other alternatives. 
 
Review for Exam #2 
Main topics to be covered on the second exam: 

• Sampling distributions 

• Confidence intervals 

• Maximum Likelihood Estimates 

• Method of Moments 

• Hypothesis tests 
o One- and two-sample tests 
o One- and two-sided tests 
o Means and proportions 
o ANOVA (using technology) 
o Tukey’s method (using technology) 
o Power 
o Significance level 
o Other parametric tests? 

 
As with the last exam, students will be given data to take home and analyze ahead of the test. In class, 
students will be asked questions about their analysis. In-class questions can be done with a calculator, 
with analysis from R that I provide, or explaining concepts. The focus will be on material covered since 
Exam #1. 
 
Next class: Exam #2 
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