
Lecture 21 
 

𝝌𝟐 tests  
We’ve seen some examples throughout the course where some statistics can be distributed using the 𝜒2 
statistic.  These tests are not usually grouped together with tests in this class.  In this section of the 
course, we are going to be looking at categorical data or binned data. 
 
Goodness of Fit Tests 
We are going to start with goodness of fit tests for one categorical variable, or for one binned (possibly 
discrete) numerical variable. 
 
Consider a genetics experiment crossing breeds of peas. The dominant alleles in the experiment were Y= 
yellow and R=round, resulting in the double dominant YR. Yule examined 269 four seed pods resulting 
from a dihybrid cross and counted the number of YR seeds in each pod. Let X denote the number of YRs 
in a randomly selected pod, with possible X values are {0, 1, 2, 3, 4}. The hypothesis that the Mendelian 
laws are operative and that genotypes of individual seeds within a pod are independent of one another 

implies that X has a binomial distribution with 𝑛 = 4 and 𝑝 =
9

16
. We are testing a series of proportions 

𝑝𝑖 = 𝑝𝑖0, where 𝑝𝑖0 = (
4
𝑖

) 𝑝𝑖(1 − 𝑝)4−𝑖, 𝑖 = 0, 1, 2, 3, 4, 𝑝 =
9

16
.  Suppose we obtain the data in the 

table. 
 

Number of YR 0 1 2 3 4 

Observed 16 45 100 82 26 

 
We need observations to compare these to, so we use the probabilities from our formula, multiplied by 
the total sample size to obtain the number of observations we predict. 
 
When we do that, we obtain a table of expected observations. 
 

Number of YR 0 1 2 3 4 

Observed 16 45 100 82 26 

Expected 9.86 50.68 97.75 83.78 26.93 

 
Keep in mind that while these are expected counts, they are averages and therefore do not need to be 
whole numbers. Even if they were, since the variable is random, we should not expect the match-up to 
be perfect. Random implies variability.  What we want to know is whether or not our data fits the 
expectations well, or poorly. Our test statistic is going to measure the relative (absolute) differences 
between what we expected and what we got. 
 

𝜒2 = ∑
(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖

4

𝑖=0

 

 
Where 𝑂 is the observed values and 𝐸 is the expected values.  In this case, we find that  
 

𝜒2 =
(16 − 9.86)2

9.86
+

(45 − 50.68)2

50.68
+

(100 − 97.75)2

97.75
+

(82 − 83.78)2

83.78
+

(26 − 26.93)2

26.93
= 4.582 

 



We tend calculate the P-value by finding 𝑃(𝜒2 ≥ 4.582) using 4 degrees of freedom (there are 5 
categories of observations, and so we use 5-1=4 degrees of freedom). 
 

 
 
Since the P-value is greater than any commonly used significance level, we can claim that a binomial 

distribution with 𝑝 =
9

16
 is a reasonable distribution for this data. 

 
If the underlying distribution is continuous, then we need to bin the data.  So, for instance, suppose we 
grouped continuous women’s height data into the following bins:  

{< 56, 57-58”, 59-60”, 61-62” 63-64”, 65-66”, 67-68”, >69} 
 
We would calculate the probability for the first category as a normally distributed variable with a mean 
of 64” and a standard deviation of 3”, we would find 𝑃(𝑋 ≤ 56.5).  Note that the cutoff is between the 
endpoints of the categories similar to what we did with our binomial approximation. So, the second 
category was 𝑃(56.5 ≤ 𝑋 ≤ 58.5) and so forth. The rest of the test would proceed in the same way, 
with 8-1=7 degrees of freedom. There are a number of ways to test for normality, and this is just one. 
 
If we are using a discrete distribution for counts, the probabilities in the cells are calculated from the 
distribution exactly, but in the final cell we include all probabilities that remain (the probabilities must 
add to 1). 
 
Tests for Independence and Homogeneity for Two-Way (Contingency) Tables 
Suppose that we have a two-way table (crosstabs) shown below comparing sports preferences among 
three sports and gender. We want to know whether gender has an effect on sports preference. Both 
gender and sport are categorical variables, so the data in the table represent counts in each of the 
categories.   
 
The display of this table includes the totals for each row and column, but when we consider the size of 
the table for purposes of calculating degrees of freedom, only the body of the table without the total 
column or total row are included there. 



 
 
When we calculate the 𝜒2 test statistic, we use a similar formula to the goodness-of-fit tests, but the 
way we calculate the expected value changes. 
 

𝜒2 = ∑
(𝑂𝑖𝑗 − 𝐸𝑖𝑖)

2

𝐸𝑖𝑗

𝑚,𝑛

𝑖,𝑗=0

 

 
For the test of homogeneity asserts that all the probabilities are identical. In other words, 𝑝𝑖𝑗  is the 

same for every combination of 𝑖 and 𝑗.  If our table is 𝑚 × 𝑛 (𝑚 rows and 𝑛 columns), then every 

probability is 𝑝𝑖𝑗 =
1

𝑚𝑛
.  In our example above, 𝑝𝑖𝑗 =

1

6
.  To obtain the expected values, we would 

multiply the probability by the grand total (the number of total observations).  The values are shown in 
the table below. 
 

 Archery Boxing Cycling 

Female 33.33 33.33 33.33 

Male 33.33 33.33 33.33 

 
Our 𝜒2 test statistic is thus 
 

𝜒2 = 
 
(35 − 33.33)2

33.33
+

(15 − 33.33)2

33.33
+

(50 − 33.33)2

33.33
+

(10 − 33.33)2

33.33
+

(30 − 33.33)2

33.33
+

(60 − 33.33)2

33.33
 

 
= 56.51 

 
The degrees of freedom for our test are (𝑚 − 1)(𝑛 − 1) = (2)(1) = 2. 
 
Putting that into our 𝜒2 distribution gives us a P-value which is very nearly zero.  I think this was pretty 
obvious looking at our table this this was unlikely given the very different observations we have in the 
different categories. 
 
The test for independence is similar except for the way we calculate the expected values to compare 
with our observations. 



 
 
 
To calculate the counts for the test of independence, we want to think about our assumptions for 
independent probabilities from earlier in the course. Recall that 𝑃(𝐴 𝑎𝑛𝑑 𝐵) = 𝑃(𝐴)𝑃(𝐵).  From our 
table, we would expect that 𝑃(𝑓𝑒𝑚𝑎𝑙𝑒 𝑎𝑛𝑑 𝑎𝑟𝑐ℎ𝑒𝑟𝑦) ≈ 𝑃(𝑓𝑒𝑚𝑎𝑙𝑒) × 𝑃(𝑎𝑟𝑐ℎ𝑒𝑟𝑦) if they are 

independent, or in other words 
35

200
= 0.175 = 𝑃(𝐹 𝑎𝑛𝑑 𝐴) =? 𝑃(𝐹)𝑃(𝐴) = (

100

200
) (

45

200
) =

9

80
=

0.1125. As we can see, these probabilities are not identical, but because we are trying to infer to the 
population and not just describe this table, we need to measure the effect of randomness on this 
outcome.  How far off is this? Is it similar enough to our expectations to infer that the population is 
independent, or is this good enough evidence conclude that the variables are indeed dependent? Our 
null hypothesis must be independence because independence is the equality claim. We can disprove 
equality, not prove equality. 
 
To fill in our expected count, we multiply these probabilities by the grand total. For Female and Archery, 

we then get the expected count to be 
9

80
× 200 = 22.5.  If we go back to the original calculation, we can 

obtain a formula for the general rule.  

(
100

200
) (

45

200
) × 200 = 22.5 

 

𝐸𝐹𝐴 =
𝑓𝑒𝑚𝑎𝑙𝑒 𝑐𝑜𝑢𝑛𝑡

𝑔𝑟𝑎𝑛𝑑 𝑡𝑜𝑡𝑎𝑙
×

𝑎𝑟𝑐ℎ𝑒𝑟𝑦 𝑐𝑜𝑢𝑛𝑡

𝑔𝑟𝑎𝑛𝑑 𝑡𝑜𝑡𝑎𝑙
× (𝑔𝑟𝑎𝑛𝑑 𝑡𝑜𝑡𝑎𝑙) = (𝑓𝑒𝑚𝑎𝑙𝑒 𝑐𝑜𝑢𝑛𝑡) ×

𝑎𝑟𝑐ℎ𝑒𝑟𝑦 𝑐𝑜𝑢𝑛𝑡

𝑔𝑟𝑎𝑛𝑑 𝑡𝑜𝑡𝑎𝑙
 

 

𝐸𝑖𝑗 = (𝑟𝑜𝑤 𝑐𝑜𝑢𝑛𝑡) ×
(𝑐𝑜𝑙𝑢𝑚𝑛 𝑐𝑜𝑢𝑛𝑡)

𝑔𝑟𝑎𝑛𝑑 𝑡𝑜𝑡𝑎𝑙
 

 
Following in this pattern, we can complete the expected table. 
 

 Archery Boxing Cycling 

Female 22.5 22.5 55 

Male 22.5 22.5 55 

 
We can calculate our 𝜒2 test statistic from there. 
 

𝜒2 = 



 
(35 − 22.5)2

22.5
+

(15 − 22.5)2

22.5
+

(50 − 22.5)2

22.5
+

(10 − 22.5)2

22.5
+

(30 − 55)2

55
+

(60 − 55)2

55
 

 
= 19.80 

 
We can then calculate our P-value. 
 

 
 
It’s not as small as the test of homogeneity, but still highly unlikely that these variables independent. I 
think this is consistent with our intuition. 
 
To conduct this test in R, you would need to input a summary table like the contingency table above. 
This can be done directly or by summarizing the raw dataframe in R. We’ll examine how to do this in the 
last lab assignment. 
 
In the next lecture, we’ll look at non-parametric tests of the same situation(s). 
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