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Euler’s Method 
Existence and uniqueness 
Linear/Integrating factors 
 
Euler’s Method is a numerical technique for solving (approximating) first order differential equations 
using successive linear approximations. 
 
Starting point (initial conditions) (𝑥0, 𝑦0) or expressed as 𝑦(𝑥𝑜) = 𝑦0. And we have a differential 

equation, 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦).  Destination, a place we want to approximate the differential equation at, 𝑦(𝑏) 

 
Additionally, we are typically information about the step size, or the number of steps we want to take to 
get to the estimation.  Step size as ℎ = Δ𝑥. The number steps is given as 𝑛.   
 

𝑏 − 𝑎

𝑛
= Δ𝑥 = ℎ 

 
𝑎 = 𝑥𝑜 

 
Example. 
I want to estimate the value of 𝑦(3) given that 𝑦′ = 𝑦(2 − 𝑡𝑦), 𝑦(2) = 1 and do it in 3 steps. 
 

𝑦𝑛+1 = 𝑦𝑛 + 𝑚𝑛(Δ𝑡) 
 

𝑚𝑛 = 𝑦′(𝑡𝑛, 𝑦𝑛) 
 
Step 0: 

𝑥0 = 2, 𝑦0 = 1 

𝑚0 = (1)(2 − (2)(1)) = 0 

 

Δ𝑡 =
3 − 2

3
=

1

3
 

 

𝑦𝑛+1 = 1 + 0 (
1

3
) = 1 

 
𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡 

 
Step 1: 

𝑥1 = 2 +
1

3
=

7

3
, 𝑦1 = 1 

 

𝑚1 = (1) (2 − (
7

3
) (1)) = −

1

3
 

 

𝑦2 = 1 + (−
1

3
) (

1

3
) =

8

9
≈ 0.888888 … 



𝑥2 =
8

3
 

 
Step 2: 

𝑥2 =
8

3
, 𝑦2 =

8

9
 

 

𝑚2 = (
8

9
) (2 − (

8

3
) (

8

9
)) = −

80

243
 

 

𝑦3 =
8

9
+ (−

80

243
) (

1

3
) =

568

729
≈ 0.779 … 

 

𝑥3 =
8

3
+

1

3
= 3 

 

Estimate for 𝑦(3) ≈
568

729
 𝑜𝑟 0.779 … 

 
Excel confirms our calculation. 
 
Example. 

Estimate the value of 𝑦(7) if 
𝑑𝑦

𝑑𝑡
=

3𝑡2

𝑦2−4
, 𝑦(3) = 1 using a step size of Δ𝑡 = 0.1. 

 
Calculation in Excel. 

 
 
Differential equation has vertical slopes at y=2 and y=-2, can cause unpredictable behavior when using 
approximation methods. 
 
Existence and Uniqueness 
 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) 

 



Most general form of a differential equation. 

Similar to 
𝑑𝑦

𝑑𝑡
=

3𝑡2

𝑦2−4
. 

 
If the differential equation is in a different form, you can solve for 𝑦′. 
 
When the differential equation is in this form, there is a test for whether or not a solution exists at a 
given point initial point. 
 
Condition #1: is 𝑓(𝑥, 𝑦) defined (at the point) 

Condition #2: Is 
𝜕𝑓

𝑑𝑦
 defined? 

 
(i.e. take the derivative of f with y as the variable, and all other variables treated like constants) 
 
Using our example, where is the differential equation defined? 
The differential equation will be undefined when the denominator is zero. So the function is not defined 
when 𝑦 = 2, −2. 
 
Also check the derivative of the function. 
 

𝑓(𝑥, 𝑦) =
3𝑥2

𝑦2 − 4
= 3𝑥2(𝑦2 − 4)−1 

 

𝑓𝑦(𝑥, 𝑦) = 3𝑥2(−1)(𝑦2 − 4)−2(2𝑦) = −
6𝑥2𝑦

(𝑦2 − 4)2
 

 
Is this function undefined anywhere? (anywhere that the original function was defined?) 
 
This function is also undefined at 𝑦 = 2, −2 and so does not add any additional restrictions. 
 
A solution (unique solution) exists for this differential anywhere that 𝑦 ≠ 2 or 𝑦 ≠ −2. 
 
Sometimes you may be asked to plot the regions where the graph is defined. 
 

 
 

Example. Plot the regions where 
𝑑𝑦

𝑑𝑥
= √𝑥2 − 𝑦2 is defined. 

 



𝑓(𝑥, 𝑦) = √𝑥2 − 𝑦2 
 

Where is √𝑥2 − 𝑦2 defined? 
 

𝑥2 − 𝑦2 ≥ 0 
𝑥2 ≥ 𝑦2 

 

 
|𝑥| ≥ |𝑦| 

 
Defined in shaded regions. Not defined outside shaded regions. 
 

𝑓(𝑥, 𝑦) = √𝑥2 − 𝑦2 = (𝑥2 − 𝑦2)1/2 
 

𝑓𝑦(𝑥, 𝑦) =
1

2
(𝑥2 − 𝑦2)−

1
2(−2𝑦) = −

𝑦

√𝑥2 − 𝑦2
 

 
This does add additional restrictions for existence and uniqueness. The original function could permit 
this square root to be zero, but now that would put a zero in the denominator, and that’s not allowed. 
 
Our new restriction is  

|𝑥| > |𝑦| 



 
The only thing that changed here was the dotted line vs. the solid line. 
 
If you have initial conditions, check to see if the initial points fall into a defined region. Any restrictions 
could impact how y evolves over time, or a limitation on the advancement of x or t from left to right. If 
you initial conditions were y(0)=0, and your differential equation had undefined values at t=-2, and t=1, 
then your solution would only be defined inside the interval (-2,1).  If your initial condition was y(3)=0, 
then you could project forward as far as you wanted, but only backward to t=1. Defined on the interval 
(1,∞). 
 
In the case of linear differential equations: 
 

𝑦′(𝑡) + 𝑝(𝑡)𝑦(𝑡) = 𝑔(𝑡) 
Standard form. (if you have anything containing t or x in front of y’, divide it out to put the equation in 
this form). 
 
The existence of a solution will depend on 𝑝(𝑡).  Where this function is defined is going to determine 
where the entire differential equation is defined. And the restriction on the solution is only going to 
depend on t. 
 

(1 − 𝑡)𝑦′ + 𝑡𝑦 = 𝑡2 − 1 
 

𝑦′ +
𝑡

1 − 𝑡
𝑦 = −𝑡 − 1 

 
 

𝑝(𝑡) =
𝑡

1 − 𝑡
 

 
𝑝(𝑡) is undefined when t=1.  So, a solution will exist on the interval (−∞, 1) ∪ (1, ∞). 
If your initial condition are 𝑦(0) = 0, then the solution exists on the interval (−∞, 1). You can only go 
one step forward in time, but as far back in time as you like. But if your initial conditions are 𝑦(2) = 0, 
then your solution is defined on (1, ∞). You can only go back in time to 1, but as far forward in time as 
you like. 
 
 



Solutions to Linear Differential Equations. 
This method involves an integrating factor: try to find a function that we can multiply through the entire 
equation in order to make it easy to integrate. The trick involves thinking of one side of our equation as 
a product rule. Sometimes this is referred to as a “reverse product rule”. 
 
A general linear equation looks like: 

𝑎(𝑡)𝑦′(𝑡) + 𝑏(𝑡)𝑦(𝑡) = 𝑓(𝑡) 
In standard form, 𝑦′(𝑡) is by itself, so divide through by 𝑎(𝑡) 
 

𝑦′(𝑡) +
𝑏(𝑡)

𝑎(𝑡)
𝑦(𝑡) =

𝑓(𝑡)

𝑎(𝑡)
 

 
𝑦′(𝑡) + 𝑝(𝑡)𝑦(𝑡) = 𝑔(𝑡) 

 
We want to obtain an integrating that will make the right side of this equation equal to a product rule. 
 
Recall: 
 

[(𝑢(𝑡)𝑣(𝑡)]′ = 𝑢′(𝑡)𝑣(𝑡) + 𝑢(𝑡)𝑣′(𝑡) 
 

We call the integrating factor 𝜇(𝑡) = 𝑒∫ 𝑝(𝑡)𝑑𝑡 

𝜇′(𝑡) = 𝑒∫ 𝑝(𝑡)𝑑𝑡 (∫ 𝑝(𝑡)𝑑𝑡)
′

= 𝑒∫ 𝑝(𝑡)𝑑𝑡𝑝(𝑡) 

 
Multiply through by 𝜇(𝑡) 
 

𝜇(𝑡)𝑦′(𝑡) + 𝜇(𝑡)𝑝(𝑡)𝑦(𝑡) = 𝑔(𝑡)𝜇(𝑡) 
𝜇(𝑡)𝑦′(𝑡) + 𝜇′(𝑡)𝑦(𝑡) = 𝑔(𝑡)𝜇(𝑡) 

 

(𝜇(𝑡)𝑦(𝑡))
′

= 𝑔(𝑡)𝜇(𝑡) 

 

∫(𝜇(𝑡)𝑦(𝑡))
′
𝑑𝑡 = ∫ 𝑔(𝑡)𝜇(𝑡)𝑑𝑡 

 

𝜇(𝑡)𝑦(𝑡) = ∫ 𝑔(𝑡)𝜇(𝑡)𝑑𝑡 + 𝐶 

 

𝑦(𝑡) =
1

𝜇(𝑡)
[∫ 𝑔(𝑡)𝜇(𝑡)𝑑𝑡 + 𝐶] 

Variation of parameters formula. 
 
Example. 

Solve 𝑡𝑦′ + 2𝑦 = 𝑡2 − 𝑡 + 1, 𝑦(1) =
1

2
 

 
𝑡𝑦′ + 2𝑦 = 𝑡2 − 𝑡 + 1 

𝑦′ +
2

𝑡
𝑦 = 𝑡 − 1 +

1

𝑡
 

 



𝜇(𝑡) = 𝑒∫
2
𝑡

𝑑𝑡 = 𝑒2 ln 𝑡 = 𝑒ln 𝑡2
= 𝑡2 

 
 

𝑡2 (𝑦′ +
2

𝑡
𝑦) = 𝑡2 (𝑡 − 1 +

1

𝑡
) 

 
𝑡2𝑦′ + 2𝑡𝑦 = 𝑡3 − 𝑡2 + 𝑡 

(𝑡2𝑦)′ = 𝑡3 − 𝑡2 + 𝑡 
 

∫(𝑡2𝑦)′𝑑𝑡 = ∫ 𝑡3 − 𝑡2 + 𝑡𝑑𝑡 

 

𝑡2𝑦 =
1

4
𝑡4 −

1

3
𝑡3 +

1

2
𝑡2 + 𝐶 

 

𝑦 =
1

4
𝑡2 −

1

3
𝑡 +

1

2
+

𝐶

𝑡2
 

𝑦(1) =
1

2
 

 
1

2
=

1

4
(1)2 −

1

3
(1) +

1

2
+

𝐶

(1)2
 

𝐶 =
1

12
 

 

𝑦(𝑡) =
1

4
𝑡2 −

1

3
𝑡 +

1

2
+

1

12𝑡2
 

 
 

𝑦(𝑡) =
1

𝜇(𝑡)
[∫ 𝑔(𝑡)𝜇(𝑡)𝑑𝑡 + 𝐶] 

 

𝜇(𝑡) = 𝑡2, 𝑔(𝑡) = 𝑡 − 1 +
1

𝑡
 

 

𝑦(𝑡) =
1

𝑡2 [∫ (𝑡 − 1 +
1

𝑡
) 𝑡2𝑑𝑡 + 𝐶] =

1

𝑡2 [
1

4
𝑡4 −

1

3
𝑡3 +

1

2
𝑡2 + 𝐶] =

1

4
𝑡2 −

1

3
𝑡 +

1

2
+

𝐶

𝑡2
 

 
Example. 
Solve 2𝑦′ − 𝑦 = 4 sin(3𝑡) , 𝑦(0) = 2 
 

𝑦′ −
1

2
𝑦 = 2 sin(3𝑡) 

 

𝜇(𝑡) = 𝑒∫ −
1
2

𝑑𝑡 = 𝑒−
1
2

𝑡 
 

𝑒−
1
2

𝑡𝑦′ −
1

2
𝑒−

1
2

𝑡𝑦 = 2𝑒−
1
2

𝑡 sin(3𝑡) 

 



(𝑒−
1

2𝑡𝑦)
′

= 2𝑒−
1
2

𝑡 sin(3𝑡) 

 

∫ (𝑒−
1

2𝑡𝑦)
′

𝑑𝑡 = ∫ 2𝑒−
1
2

𝑡 sin(3𝑡) 𝑑𝑡 

 

𝑒−
1
2

𝑡𝑦 = ∫ 2𝑒−
1
2

𝑡 sin(3𝑡) 𝑑𝑡 

 
 

∫ 2𝑒−
1
2

𝑡 sin(3𝑡) 𝑑𝑡 

 

𝑢 = 2 sin(3𝑡) , 𝑑𝑣 = 𝑒−
1
2

𝑡𝑑𝑡 

𝑑𝑢 = 6 cos(3𝑡) 𝑑𝑡, 𝑣 = −2𝑒−
1
2

𝑡 
 

2 sin(3𝑡) [−2𝑒−
1
2

𝑡
] − ∫ −2𝑒−

1
2

𝑡(6 cos(3𝑡))𝑑𝑡 

 

−4𝑒−
1
2

𝑡 sin(3𝑡) + ∫ 12𝑒−
1
2

𝑡 cos(3𝑡) 𝑑𝑡 

 

𝑢 = 12 cos(3𝑡) , 𝑑𝑣 = 𝑒−
1
2

𝑡𝑑𝑡 

𝑑𝑢 = −36 sin(3𝑡) 𝑑𝑡, 𝑣 = −2𝑒−
1
2

𝑡 
 

−4𝑒−
1
2

𝑡 sin(3𝑡) + 12 cos(3𝑡) [−2𝑒−
1
2

𝑡] − ∫ −2𝑒−
1
2

𝑡( − 36 sin(3𝑡))𝑑𝑡  

 

∫ 2𝑒−
1
2

𝑡 sin(3𝑡) 𝑑𝑡 = −4𝑒−
1
2

𝑡 sin(3𝑡) + 12 cos(3𝑡) [−2𝑒−
1
2

𝑡
] − ∫ 72𝑒−

1
2

𝑡 sin(3𝑡) 𝑑𝑡 

 

∫ 2𝑒−
1
2

𝑡 sin(3𝑡) 𝑑𝑡 + ∫ 72𝑒−
1
2

𝑡 sin(3𝑡) 𝑑𝑡 = −4𝑒−
1
2

𝑡 sin(3𝑡) + 12 cos(3𝑡) [−2𝑒−
1
2

𝑡] 

 

37 ∫ 2𝑒−
1
2

𝑡 sin(3𝑡) 𝑑𝑡 = −4𝑒−
1
2

𝑡 sin(3𝑡) − 24 cos(3𝑡) [𝑒−
1
2

𝑡] 

 

∫ 2𝑒−
1
2

𝑡 sin(3𝑡) 𝑑𝑡 =
1

37
[−4𝑒−

1
2

𝑡 sin(3𝑡) − 24𝑒−
1
2

𝑡 cos(3𝑡)] + 𝐶 

 

𝑒−
1
2

𝑡𝑦 = ∫ 2𝑒−
1
2

𝑡 sin(3𝑡) 𝑑𝑡 

 

𝑒−
1
2

𝑡𝑦 =
1

37
[−4𝑒−

1
2

𝑡 sin(3𝑡) − 24𝑒−
1
2

𝑡 cos(3𝑡)] + 𝐶 

 

Multiply everything by 𝑒
1

2
𝑡 



𝑦 = −
4

37
sin(3𝑡) −

24

37
cos(3𝑡) + 𝐶𝑒

1
2

𝑡 

 

2 = −
4

37
(0) −

24

37
(1) + 𝐶𝑒0 

 

𝐶 = 2 +
24

37
=

98

37
 

 

𝑦 = −
4

37
sin(3𝑡) −

24

37
cos(3𝑡) +

98

37
𝑒

1
2

𝑡 

 
Tank Problems/Concentration Problems 
 
We have a large tank, that is filled either with water (some other fluid) or a mixture of water and some 
other chemical that dissolves into the water. (well-mixed mixture). Add additional fluid or mixture to the 
tank at a particular rate, and then removed the mixture (after mixing) from the tank (at a particular 
rate). 
 

𝑑𝐴

𝑑𝑡
= 𝑅𝑎𝑡𝑒𝑖𝑛 − 𝑅𝑎𝑡𝑒𝑜𝑢𝑡 

 

𝑅𝑎𝑡𝑒𝑖𝑛 =
𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑚𝑖𝑥𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑢𝑛𝑖𝑡 𝑜𝑓 𝑙𝑖𝑞𝑢𝑖𝑑
×

𝑢𝑛𝑖𝑡 𝑜𝑓 𝑙𝑖𝑞𝑢𝑖𝑑

𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒
 

 
𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑚𝑖𝑥𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑢𝑛𝑖𝑡 𝑜𝑓 𝑙𝑖𝑞𝑢𝑖𝑑
 think 5 g of salt per liter. 

 
𝑢𝑛𝑖𝑡 𝑜𝑓 𝑙𝑖𝑞𝑢𝑖𝑑

𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒
  think 3 liters per minute 

 
Rate out is similar, but we have to take into the size of the tank, and that the amount (of salt) may be 
increasing or decreasing. 
The second product is basically the same as for rate in. 
 
Basically, there are two scenarios that typically happen in a problem like this: 
Rate of liquid flowing in and flowing out is identical, in which case, the problem can be solved with 
separation of variables (there is no time dependency in the rate out term). 
 
If the rates of flow in and out are different, then the amount of liquid in the tank will depend on time, 
and we’ll need to use linear solution methods to solve it. 
(We tend to get powers of the denominator of the rate out term), and coefficients that are very large. 
 
 


