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Introduction to the course 
Types of DEs 
Direction Fields 
 
Differential Equations are equations that contain derivatives. 
 

𝑓′(𝑥) = 𝑥2 + 1 
Constants of integration will be in the solution unless there is information about the solution at a point 
in time/space so that the constant can be solved for. Initial value problems (IVP).  (Typically, these occur 
when x=0 or t=0, but if they are not zero, sometimes they are referred as boundary value problems 
(BVP).) These are basically the same thing when we have only one variable, and only one derivative (first 
derivative). The difference will matter only when we have second derivatives or when we have more 
than one variable. 
 
Ordinary differential equations (ODE) contain the derivative for functions that have only one 
independent variable. Partial differential equations (PDE) contain derivatives for functions that depend 
on more than one independent variable. 
 
ODEs 

𝑓′(𝑥) = 𝑥2 + 1 
𝑑𝑓

𝑑𝑥
= 𝑘𝑓 + 𝑥 

 
𝑑2𝑓

𝑑𝑥2
= 𝑘𝑓 + 𝑥2 

 
𝑦′′ + 𝑦′ + 𝑦 = 0 

PDEs 
𝑓𝑥𝑥 − 𝑓𝑦𝑦 = 0 

 
𝜕𝑓

𝜕𝑥
(𝑥2) +

𝜕2𝑓

𝜕𝑥𝜕𝑦
= 𝑥𝑦 

 
Order of a differential equation: 
Is based on the highest derivative in the equation. 
First derivative = first order 

𝑓′(𝑥) = 𝑥2 + 1 
 

𝑑𝑓

𝑑𝑥
= 𝑘𝑓 + 𝑥 

 
𝜕𝑓

𝜕𝑥
= 𝑥𝑦 

 
Second order 
 



𝑑2𝑓

𝑑𝑥2
= 𝑥𝑓 + 𝑥2 

 
𝑦′′ + 𝑦′ + 𝑦 = 0 

 
𝑓𝑥𝑥 − 𝑓𝑦𝑦 = 0 

 
𝜕𝑓

𝜕𝑥
(𝑥2) +

𝜕2𝑓

𝜕𝑥𝜕𝑦
= 𝑥𝑦 

 
Third order 

𝑦′′′ + 𝑦′ − 𝑦 = 0 
 
Fourth order 

𝑦𝐼𝑉 − 𝑦 = 0 

𝑦(4) − 𝑦 = 0 
 
Degree of a differential equation: 
Is related to the highest power of the derivatives 
 
Linear vs. non-linear 
A linear differential is linear in the function and its derivatives, but need not be linear in the 
independent variable(s). 
 
Linear: 

𝑦′′ + 𝑦′ + 𝑦 = 0 
𝑥2𝑦′′ + 𝑥𝑦′ + 𝑦 = 0 

 
Nonlinear: 

𝑦′′ + 𝑦′ + 𝑦 = cos⁡(𝑦) 

(
𝑑𝑦

𝑑𝑥
)
2

+ 𝑦 = 0 

 

𝑦′′(𝑦′) =
𝑥2

2
 

 
Direction Fields/Slope Fields 
A way of visualizing the behavior of solutions of a differential equation (first order) without solving it 
analytically (without finding an equation that solves the problem). 
 
Start with something relatively simple. 
 

𝑦′ = 𝑦 + 2 
 
Recall from calc I that y’ is the slope of the tangent line at a point. 
This ODE does not depend on any independent variable (like t), so it doesn’t change over time. 
(Autonomous differential equations do not depend on the independent variable. The derivative only 
depends on the value of function.) 



 
Suppose I know that I’m starting out at y=0, then the ODE tells that slope is 𝑦′ = 2. Picture a slope field 
as a grid of slope values at points on the graph. (x,0) and plot a slope that has a value of 2. 
 
A value of y where the slope is 0 is called an equilibrium. In this equation y=-2 is an equilibrium. 
 
A nullcline is a function or curve where the derivative is zero (rather than a constant). It is not an 
equilibrium since you can’t stay on the nullcline as you move in x or time. 
 

 
 
Solving differential equations using separation of variables or regular integration. 
 
Solving equations that have a derivative and no other function terms. 
 

𝑓′(𝑥) = 𝑥2 + 1 
If the equation contains no other functions, then put the derivative on one side and integrate in the 
remaining variable. 
 

𝑓(𝑥) = ∫𝑥2 + 1𝑑𝑥 =
𝑥3

3
+ 𝑥 + 𝐶 

The function that satisfies our differential is 𝑓(𝑥) =
1

3
𝑥3 + 𝑥 + 𝐶. 

 
This is a family of solutions. The family will all be shaped the same way, but will have a vertical shift to 
the solutions. 
 



 
These are all the same cubic functions, but shifted up or down. 
 
If we have an initial condition, such as 𝑓(0) = 1, then we have enough information to find the specific 
solution that satisfies both the differential equation and the initial condition. 
 

1

3
(0)3 + 0 + 𝐶 = 1 

𝐶 = 1 
 

𝑓(𝑥) =
1

3
𝑥3 + 𝑥 + 1 

 
𝑦′′(𝑥) = 𝑒𝑥 + 𝑥 

 

𝑦′(𝑥) = ∫𝑒𝑥 + 𝑥𝑑𝑥 = 𝑒𝑥 +
1

2
𝑥2 + 𝐶1 

 

𝑦(𝑥) = ∫𝑒𝑥 +
1

2
𝑥2 + 𝐶1𝑑𝑥 = 𝑒𝑥 +

1

6
𝑥3 + 𝐶1𝑥 + 𝐶2 

 
To solve for both of these constants, I need two conditions. Either two initial conditions, say 𝑦(0) = 1 
and 𝑦′(0) = 0, or two boundary conditions, say 𝑦(0) = 1, 𝑦(1) = 1. 
 
Let’s solve for the initial conditions. 

𝑒0 +
1

2
02 + 𝐶1 = 0 

 
1 + 𝐶1 = 0 
𝐶1 = −1 

 

𝑦(𝑥) = 𝑒𝑥 +
1

6
𝑥3 − 𝑥 + 𝐶2 

𝑒0 +
1

6
03 − 0 + 𝐶2 = 1 

 



1 + 𝐶2 = 1 
𝐶2 = 0 

 

𝑦(𝑥) = 𝑒𝑥 +
1

6
𝑥3 − 𝑥 

 
Simplest kind of differential equations. Things you have encountered in calculus. 
 
We want to be able to extend our solutions to equations that contain both the function and its 
derivative. 
 

𝑦′ = 𝑦 + 2 
 
Separation of variables. 

𝑑𝑦

𝑑𝑥
= 𝑦 + 2 

 
Rearrange the equation to put all the y variables on the left side and all the x variables on the right side. 
We can’t add and subtract. Want to be able to use the dy and dx as signals of integration with respect to 
the corresponding variable.  Something akin to the “reverse” chain rule. 
 
Multiply on both sides of the equation by dx, and going to divide by (y+2). 
 

𝑑𝑦

𝑦 + 2
= 𝑑𝑥 

Integrate each side of the equation with the respective variables: integrate with y on the left, and 
integrate with x on the right. 
 

∫
𝑑𝑦

𝑦 + 2
= ∫𝑑𝑥 

 
ln|𝑦 + 2| = 𝑥 + 𝐶 

 

𝑒ln|𝑦+2| = 𝑒𝑥+𝐶 
𝑦 + 2 = 𝑒𝑥𝑒𝐶 

Let 𝑒𝑐 = 𝐴 
𝑦 + 2 = 𝐴𝑒𝑥 
𝑦 = 𝐴𝑒𝑥 − 2 

 
I would need an initial condition to solve for my constant A. 
 
But does it satisfy the initial equation? 
 

𝑦′ = 𝑦 + 2 
 

𝑦′ = 𝐴𝑒𝑥 = ⁡𝐴𝑒𝑥 − 2 + 2 = 𝐴𝑒𝑥 
 
Our solution method does work for the family of solutions. 



 
Separation of variables works when we can algebraically separate the variables with all y’s on one side 
and all independent variables on the other side. 
 
What can a separable equation look like before we get started? 
 

𝑦′ = 𝑓(𝑥, 𝑦) 
Separable 

𝑦′ = 𝑥𝑦 
Non-separable 

𝑦′ = 𝑥 + 𝑦 
 

𝑀(𝑦)𝑦′ = 𝑁(𝑥) 
 

𝑀(𝑥, 𝑦)𝑑𝑦 + 𝑁(𝑥, 𝑦)𝑑𝑥 = 0 
 
In these cases you have the most algebra to do, and whether or not it can be separated is going to 
depend of the specifics of what M(x,y) and N(x,y) are. 
 
Separable  

𝑒𝑥𝑦⁡𝑑𝑦 + 𝑥√1 − 𝑦2𝑑𝑥 = 0 

𝑒𝑥𝑦𝑑𝑦 = −𝑥√1 − 𝑦2𝑑𝑥 
 

𝑦𝑑𝑦

√1 − 𝑦2
= −𝑥𝑒−𝑥𝑑𝑥 

I could integrate this. Left side would use u-substitution. The right side would use integration by parts. 
 
Not separable 

(𝑥 + 𝑦)𝑑𝑦 + (𝑒𝑥𝑦)𝑑𝑥 = 0 
 
I will do my best to avoid integrating with trig substitution. I will limit the partial fractions cases. When 
we look at logistic functions later (population modeling problems, automonous) we will require partial 
fractions. 
 
Continue solving our example from above. 
 

𝑦𝑑𝑦

√1 − 𝑦2
= −𝑥𝑒−𝑥𝑑𝑥 

 

∫
𝑦𝑑𝑦

√1 − 𝑦2
 

𝑢 = 1 − 𝑦2 
𝑑𝑢 = −2𝑦𝑑𝑦 

 

−
1

2
𝑑𝑢 = 𝑦𝑑𝑦 

 



∫
𝑦𝑑𝑦

√1 − 𝑦2
= ∫

1
2
𝑑𝑢

𝑢
1
2

= ∫
1

2
𝑢−

1
2 𝑑𝑢 = 𝑢

1
2
1

2
(2) = √𝑢 = √1 − 𝑦2 

 

∫−𝑥𝑒−𝑥𝑑𝑥 

 
𝑢 = −𝑥, 𝑑𝑣 = 𝑒−𝑥𝑑𝑥 
𝑑𝑢 = −1𝑑𝑥, 𝑣 = −𝑒−𝑥 

 

∫−𝑥𝑒−𝑥𝑑𝑥 = 𝑥𝑒−𝑥 −∫𝑒−𝑥 𝑑𝑥 = 𝑥𝑒−𝑥 + 𝑒−𝑥 + 𝐶 

 

√1 − 𝑦2 = ⁡𝑥𝑒−𝑥 + 𝑒−𝑥 + 𝐶 
 
 
It is okay to leave messing problems in implicit form when the explicit form will introduce square roots 
or be uglier than what we start with. 
 
Example. 

𝑑𝑦

𝑑𝑡
= 𝑒𝑦−𝑡 sec(𝑦) (1 + 𝑡2), 𝑦(0) = 0 

 
𝑑𝑦

𝑑𝑡
= 𝑒𝑦𝑒−𝑡 sec(𝑦) (1 + 𝑡2) 

 
𝑒−𝑦𝑑𝑦

sec(𝑦)
= 𝑒−𝑡(1 + 𝑡2)𝑑𝑡 

 
cos(𝑦) 𝑒−𝑦𝑑𝑦 = (1 + 𝑡2)𝑒−𝑡𝑑𝑡 

 

∫𝑒−𝑦 cos(𝑦) 𝑑𝑦 = 

 
𝑢 = cos(𝑦) , 𝑑𝑣 = 𝑒−𝑦𝑑𝑦 

𝑑𝑢 = −sin(𝑦) 𝑑𝑦, 𝑣 = −𝑒−𝑦 
 

−𝑒−𝑦 cos(𝑦) − ∫𝑒−𝑦 sin(𝑦) 𝑑𝑦 

 
𝑢 = sin(𝑦) , 𝑑𝑣 = 𝑒−𝑦𝑑𝑦 
𝑑𝑢 = cos(𝑦) 𝑑𝑦, 𝑣 = −𝑒−𝑦 

 

−𝑒−𝑦 cos(𝑦) − [−𝑒−𝑦 sin(𝑦) − ∫−𝑒−𝑦 cos(𝑦) 𝑑𝑦] 

−𝑒−𝑦 cos(𝑦) + [𝑒−𝑦 sin(𝑦) − ∫𝑒−𝑦 cos(𝑦) 𝑑𝑦] = ∫𝑒−𝑦 cos(𝑦) 𝑑𝑦 

 



−𝑒−𝑦 cos(𝑦) + 𝑒−𝑦 sin(𝑦) = 2∫𝑒−𝑦 cos(𝑦) 𝑑𝑦 

 

∫𝑒−𝑦 cos(𝑦) 𝑑𝑦 =
1

2
(𝑒−𝑦 sin(𝑦) − 𝑒−𝑦 cos(𝑦)) + 𝐶 

 
 

∫(1 + 𝑡2)𝑒−𝑡𝑑𝑡 

 

+/- 𝑢 𝑑𝑣 

+ 1 + 𝑡2 𝑒−𝑡 
- 2𝑡 −𝑒−𝑡 

+ 2 𝑒−𝑡 
- 0 −𝑒−𝑡 

 

∫(1 + 𝑡2)𝑒−𝑡𝑑𝑡 = (1 + 𝑡2)(−𝑒−𝑡) − 2𝑡(𝑒−𝑡) + (2)(−𝑒−𝑡) + 𝐶 

 
1

2
(𝑒−𝑦 sin(𝑦) − 𝑒−𝑦 cos(𝑦)) = −(1 + 𝑡2)(𝑒−𝑡) − 2𝑡(𝑒−𝑡) − (2)(𝑒−𝑡) + 𝐶 

 
 

1

2
(𝑒−0 sin(0) − 𝑒−0 cos(0)) = −(1 + 02)(𝑒−0) − 2(0)(𝑒−0) − (2)(𝑒−0) + 𝐶 

 
1

2
(1) = −(1)(1) − (2)(1) + 𝐶 

 
1

2
= −1 − 2 + 𝐶 

1

2
= −3 + 𝐶 

7

2
= 𝐶 

 
1

2
(𝑒−𝑦 sin(𝑦) − 𝑒−𝑦 cos(𝑦)) = −(1 + 𝑡2)(𝑒−𝑡) − 2𝑡(𝑒−𝑡) − (2)(𝑒−𝑡) +

7

2
 

 
 
Verifying that an equation is a solution to a differential equation. 
 
Suppose we have a differential equation like 
 

𝑦′′ + 4𝑦′ − 12𝑦 = 0 
 
I propose a solution of 𝑦(𝑡) = 𝑐1𝑒

−6𝑡 
Verify the function is a solution to the differential equation. 
 



𝑦′ = −6𝑐1𝑒
−6𝑡 

𝑦′′ = 36𝑐1𝑒
−6𝑡 

𝑦′′ + 4𝑦′ − 12𝑦 = 0 
 

36𝑐1𝑒
−6𝑡 + 4(−6𝑐1𝑒

−6𝑡) − 12𝑐1𝑒
−6𝑡 =?= 0 

 
𝑐1(𝑒

−6𝑡)(36 − 24 − 12) = 0 
 
This means that this solution does satisfy the equation. If the equation is not equal on both sides, then 
or the function is not a solution to the equation. 
 
There is a problem on the written homework that requires you to know hyperbolic trig functions. 
 
 
 
 
 


