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Second Order Equations (Ch 5) 
Constant Coefficients, Cauchy-Euler 
 
Second order equations: 

𝑎(𝑥)𝑦′′ + 𝑏(𝑥)𝑦′ + 𝑐(𝑥)𝑦 = 𝐹(𝑥) 
 
𝐹(𝑥) is often referred to as the forcing function. 
 
When 𝐹(𝑥) = 0, the equation is said to be homogeneous. 
First we will learn to solve the homogeneous equations, and then later, the non-homogeneous case. 
 
Constant Coefficient case: 

𝑎(𝑥) = 𝑎, 𝑏(𝑥) = 𝑏, 𝑐(𝑥) = 𝑐 
 
Ex.  

4𝑦′′ + 4𝑦′ + 𝑦 = 0 
 
Cauchy-Euler case: 

𝑎(𝑥) = 𝑎𝑥2, 𝑏(𝑥) = 𝑏𝑥, 𝑐(𝑥) = 𝑐 
Ex. 

𝑥2𝑦′′ − 3𝑥𝑦′ + 5𝑦 = 0 
 
For the constant coefficient case: we have derivatives that differ only by a constant and cancel out. 
What kind of function could that possibly be? 
 

The solution must be of the form 𝑦 = 𝑒𝑘𝑥. 
 
For the Cauchy-Euler case: we have derivative that differ from each other by a multiple of x. The base 
function guess is 𝑦 = 𝑥𝑛 
 
For the constant coefficient case: 

𝑎𝑦′′ + 𝑏𝑦′ + 𝑐𝑦 = 0 
Assume the solution is of the form: 𝑦 = 𝑒𝑘𝑥 (technically 𝑦 = 𝑐1𝑒𝑘𝑥) 
 

𝑎(𝑘2𝑒𝑘𝑥) + 𝑏(𝑘𝑒𝑘𝑥) + 𝑐𝑒𝑘𝑥 = 0 

 

𝑒𝑘𝑥(𝑎𝑘2 + 𝑏𝑘 + 𝑐) = 0 
That means that the polynomial in k determines the solution. 
 
We can use the quadratic formula to solve this, or if it’s factorable, we can do that. 
 
For the Cauchy-Euler case, 

𝑎𝑥2𝑦′′ + 𝑏𝑥𝑦′ + 𝑐𝑦 = 0 
Assume the solution is of the form 𝑦 = 𝑥𝑛 (technically, 𝑦 = 𝑐1𝑥𝑛) 
 

𝑎𝑥2(𝑛(𝑛 − 1))𝑥𝑛−2 + 𝑏𝑥(𝑛𝑥𝑛−1) + 𝑐𝑥𝑛 = 0 



 
𝑎𝑛(𝑛 − 1)𝑥𝑛 + 𝑏𝑛𝑥𝑛 + 𝑐𝑥𝑛 = 0 

 
𝑥𝑛(𝑎𝑛(𝑛 − 1) + 𝑏𝑛 + 𝑐) = 0 

 
𝑎𝑛2 − 𝑎𝑛 + 𝑏𝑛 + 𝑐 = 0 
𝑎𝑛2 + (𝑏 − 𝑎)𝑛 + 𝑐 = 0 

 
Both of these methods come down to solving a quadratic. 
 
First order equations had only one constant of integration and only one solution.  For second order 
differential equations we end up with two coefficients to solve for, and therefore any initial value 
problem (or boundary value problem) must have two conditions in order to solve for both coefficients. 
 
And we will need two independent functions to find all possible solutions. 
 
For higher order problems , the math basically works out the same way. We assume the appropriate 
solutions type (based on whether the coefficient are constant or Cauchy-Euler), and then we get a 
polynomial that we have to solve. 
 
Characteristic equation: the constant coefficient equation produces a polynomial that is called a 
characteristic equation: 𝑎𝑘2 + 𝑏𝑘 + 𝑐 = 0. The Cauchy-Euler polynomial is not called characteristic. It’s 
called auxiliary.  𝑎𝑛2 + (𝑏 − 𝑎)𝑛 + 𝑐 = 0. 
 
Example. 

𝑦′′ + 11𝑦′ + 24𝑦 = 0, 𝑦(0) = 0, 𝑦′(0) = −7 
 
Replace 𝑦′′ → 𝑘2, 𝑦′ → 𝑘, 𝑦 → 1 to get characteristic equation 
 

𝑘2 + 11𝑘 + 24 = 0 
 

(𝑘 + 3)(𝑘 + 8) = 0 
 

𝑘 = −3, −8 
Proposed general solution for the differential equation: 
 

𝑦 = 𝑐1𝑒−3𝑥 + 𝑐2𝑒−8𝑥 
 
Linear combination of the solutions for the differential equation. 
 

0 = 𝑐1 + 𝑐2 
 

𝑦′ = −3𝑐1𝑒−3𝑥 − 8𝑐2𝑒−8𝑥 
−7 = −3𝑐1 − 8𝑐2 

 
𝑐1 + 𝑐2 = 0 

−3𝑐1 − 8𝑐2 = −7 
 



𝑐1 = −𝑐2 
−3(−𝑐2) − 8𝑐2 = −7 

3𝑐2 − 8𝑐2 = −7 
−5𝑐2 = −7 

 

𝑐2 =
7

5
 

 

𝑐1 = −
7

5
 

 

𝑦(𝑥) = −
7

5
𝑒−3𝑥 +

7

5
𝑒−8𝑥 

 
My particular solution to the initial value problem. 
 
Example. 

𝑥2𝑦′′ − 4𝑥𝑦′ + 6𝑦 = 0 
 
Replace 𝑥2𝑦′′ → 𝑛(𝑛 − 1), 𝑥𝑦′ → 𝑛, 𝑦 → 1 
 

𝑛(𝑛 − 1) − 4𝑛 + 6 = 0 
 

𝑛2 − 𝑛 − 4𝑛 + 6 = 0 
𝑛2 − 5𝑛 + 6 = 0 

 
(𝑛 − 2)(𝑛 − 3) = 0 

𝑛 = 2,3 
 

𝑦 = 𝑐1𝑥2 + 𝑐2𝑥3 
 
Often in Cauchy-Euler IVPs, they don’t use 0, but will use some other number like 1. 
 
Linear independence is a concept from linear algebra. In this context, we want to be able to generate all 
the possible solutions of our differential equation. It’s not just enough for the proposed solutions to 
both satisfy the differential equation. They also must be independent. 
 
Suppose 𝑦1 = 2𝑥2, 𝑦2 = 4𝑥2 
 
These are both solutions to the differential equation, but they are not linearly independent. When we 
have only two functions, this basically comes down to is one function a multiple of the other function.  
 
Wronskian 

𝑊(𝑥) = |
𝑦1 𝑦2

𝑦1′ 𝑦2′| 

 
If 𝑊(𝑥) ≠ 0 (for all x), then the set of solutions is independent. If the W(x)=0 for all x, then the set of 
solutions is dependent. 
 



𝑊 = |2𝑥2 4𝑥2

4𝑥 8𝑥
| = 2𝑥2(8𝑥) − 4𝑥(4𝑥2) = 16𝑥3 − 16𝑥3 = 0 

 
Compared to the 𝑥2, 𝑥3 solutions. 

𝑊 = |𝑥2 𝑥3

2𝑥 3𝑥2| = 𝑥2(3𝑥2) − 2𝑥(𝑥3) = 3𝑥4 − 2𝑥4 = 𝑥4 

 
This is not 0 (for most values of x). 
These two solutions are independent. Thus we can use them to find any possible solution to the a set of 
initial conditions. 
 
For higher order problems, you will need to take a bigger determinant. 
 
For third order: 

𝑊(𝑥) = |

𝑦1 𝑦2 𝑦3

𝑦1′ 𝑦2′ 𝑦3′

𝑦1
′′ 𝑦2

′′ 𝑦3
′′

| = 𝑦1 |
𝑦2′ 𝑦3′

𝑦2
′′ 𝑦3

′′| − 𝑦2 |
𝑦1′ 𝑦3′

𝑦1
′′ 𝑦3

′′| + 𝑦3 |
𝑦1′ 𝑦2′

𝑦1
′′ 𝑦2

′′| 

 
= 𝑦1[𝑦2

′ (𝑦3
′′) − 𝑦2

′′(𝑦3
′ )] − 𝑦2[𝑦1

′ (𝑦3
′′) − 𝑦3

′ (𝑦1
′′)] + 𝑦3[𝑦1

′ (𝑦2
′′) − 𝑦1

′′(𝑦2
′ )] 

 
Abel’s Theorem 
 
For a second order equation in standard for form: 𝑦′′ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 0 
 

𝑊(𝑥) = 𝑐0𝑒∫ −𝑝(𝑥)𝑑𝑥 
 
Don’t confuse this with the integrating factor from linear first order equations. They are similar, but note 
the sign change!!! 
 

𝑥2𝑦′′ − 4𝑥𝑦′ + 6𝑦 = 0 
In standard form: 
 

𝑦′′ −
4

𝑥
𝑦′ +

6

𝑥2
𝑦 = 0 

 

𝑝(𝑥) = −
4

𝑥
 

 

𝑊(𝑥) = 𝑐0𝑒− ∫ −
4
𝑥

𝑑𝑥 = 𝑐0𝑒∫
4
𝑥

𝑑𝑥 = 𝑐0𝑒4 ln(𝑥) = 𝑐0𝑒ln(𝑥4) = 𝑐0𝑥4 
 
   For constant coefficients: 

𝑦′′ + 11𝑦′ + 24𝑦 = 0 
 

𝑝(𝑥) = 11 
 

𝑊(𝑥) = 𝑐0𝑒− ∫ 𝑝(𝑥)𝑑𝑥 = 𝑐0𝑒∫ −11𝑑𝑥 = 𝑐0𝑒−11𝑥 
𝑊(𝑥) = 𝑐0𝑒−11𝑥 

 



𝑊 = | 𝑒−3𝑥 𝑒−8𝑥

−3𝑒−3𝑥 −8𝑒−8𝑥| = −8𝑒−11𝑥 − (−3𝑒−11𝑥) = −5𝑒−11𝑥 

 
When we have enough solutions that are linearly independent, that is called a fundamental set of 
solutions. 
 
For higher order problems, Abel’s theorem is similar in this sense: 
 

𝑦′′′ + 𝑝(𝑥)𝑦′′ + 𝑞(𝑥)𝑦′ + 𝑟(𝑥)𝑦 = 0 
 
The same formula applies for the Wronskian: in standard form, the next derivative one down from the 
highest derivative determines the p(x) function. 
 
Consider the equation: 
 

𝑦′′ + (3𝑥 − 1)𝑦′ + 6𝑦 = 0 
 
Even though I can’t solve the equation, I can find the value of Wronskian. 
 

𝑝(𝑥) = 3𝑥 − 1 
 

𝑊(𝑥) = 𝑐0𝑒− ∫ 3𝑥−1𝑑𝑥 = 𝑐0𝑒
(−

3
2

𝑥2+𝑥)
 

 
But it may help me to guess possible solutions to try. 
 
Repeated roots. 
 
Consider the differential equation 

𝑦′′ + 4𝑦′ + 4𝑦 = 0 
 

𝑘2 + 4𝑘 + 4 = 0 
(𝑘 + 2)2 = 0 

 
𝑘 = −2 

 
𝑦1 = 𝑐1𝑒−2𝑥 

 
The trick to make the second solution (for the constant coefficient case) is to multiply the solution by x. 
 

𝑦2 = 𝑐2𝑥𝑒−2𝑥 
 
General solution: 

𝑦(𝑥) = 𝑐1𝑒−2𝑥 + 𝑐2𝑥𝑒−2𝑥 
 

𝑦2
′ = 𝑐2𝑒−2𝑥 − 2𝑐2𝑥𝑒−2𝑥 

 
𝑦2

′′ = −2𝑐2𝑒−2𝑥 − 2𝑐2𝑒−2𝑥 + 4𝑐2𝑥𝑒−2𝑥 = −4𝑐2𝑒−2𝑥 + 4𝑐2𝑥𝑒−2𝑥 
 



𝑦′′ + 4𝑦′ + 4𝑦 = 0 
 

−4𝑒−2𝑥 + 4𝑥𝑒−2𝑥 + 4(𝑒−2𝑥 − 2𝑥𝑒−2𝑥) + 4(𝑥𝑒−2𝑥) =? 0 
 

−4𝑒−2𝑥 + 4𝑥𝑒−2𝑥 + 4𝑒−2𝑥 − 8𝑥𝑒−2𝑥 + 4𝑥𝑒−2𝑥 =? 0 
 
They both work in the equation. Now, is the Wronskian non-zero: 
 

𝑊 = | 𝑒−2𝑥 𝑥𝑒−2𝑥

−2𝑒−2𝑥 𝑒−2𝑥 − 2𝑥𝑒−2𝑥| = 𝑒−2𝑥(𝑒−2𝑥 − 2𝑥𝑒−2𝑥) − (−2𝑒−2𝑥)(𝑥𝑒−2𝑥) = 

 
𝑒−4𝑥 − 2𝑥𝑒−4𝑥 + 2𝑥𝑒−4𝑥 = 𝑒−4𝑥 

 
This is a fundamental set. 

If you have a repeated root (from a perfect square polynomial), one solution is 𝑒𝑘𝑥 and the second 

solution is 𝑥𝑒𝑘𝑥. 
 
For Cauchy-Euler, we need a different trick. The trick we use is to multiply by ln(x). 
 

𝑥2𝑦′′ + 5𝑥𝑦′ + 4𝑦 = 0 
 

𝑛(𝑛 − 1) + 5𝑛 + 4 = 0 
𝑛2 − 𝑛 + 5𝑛 + 4 = 0 

𝑛2 + 4𝑛 + 4 = 0 
(𝑛 + 2)2 = 0 

 
𝑛 = −2 

𝑦1 = 𝑐1𝑥−2 
 

𝑦2 = 𝑐2𝑥−2 ln(𝑥) 
 
General solution: 

𝑦(𝑥) = 𝑐1𝑥−2 + 𝑐2𝑥−2 ln(𝑥) 
 
In higher order problems, say, a constant coefficient case, where k is a repeated root more than 2 times, 

 Just keep multiplying by x to get additional solutions: 𝑒𝑘𝑥, 𝑥𝑒𝑘𝑥, 𝑥2𝑒𝑘𝑥, 𝑒𝑡𝑐. 
 
Complex root cases. 
 
Start with pure imaginary roots. 
 

𝑦′′ + 𝑦 = 0 
 

𝑘2 + 1 = 0 
𝑘 = ±𝑖 

 
 
What kind of a function has the property that  𝑦′′ = −𝑦 



 
𝑦 = sin(𝑥) 

𝑦′ = cos(𝑥) 
𝑦′′ = − sin(𝑥) 

 
Or 

𝑦 = cos(𝑥) 
𝑦′ = − sin(𝑥) 
𝑦′′ = − cos(𝑥) 

 
The functions that satisfy this relationship 𝑦′′ = −𝑦 are 𝑦 = 𝑐1 sin(𝑥) , 𝑦 = 𝑐2 cos(𝑥) 
 

That is equivalent to 𝑒𝑖𝑥  𝑎𝑛𝑑 𝑒−𝑖𝑥 
 
How does that work?? 
 

𝑒𝑖𝑥 = cos(𝑥) + 𝑖 sin(𝑥) 
 

𝑒𝑖𝜋 = cos(𝜋) + 𝑖 sin(𝜋) 
 
Euler’s Theorem. 
 

cos(𝑥) =
𝑒𝑖𝑥 + 𝑒−𝑖𝑥

2
 

 

sin(𝑥) =
𝑒𝑖𝑥 − 𝑒−𝑖𝑥

2𝑖
 

 
 

sinh(𝑥) =
(𝑒𝑥 − 𝑒−𝑥)

2
 

 

cosh(𝑥) =
𝑒𝑥 + 𝑒−𝑥

2
 

 
 
Fully complex solutions are 𝑘 = 𝜆 ± 𝜇𝑖 
 

𝑒(𝜆+𝜇𝑖)𝑥 + 𝑒(𝜆−𝜇𝑖)𝑥 = 𝑒(𝜆𝑥+𝜇𝑖𝑥) + 𝑒(𝜆𝑥−𝜇𝑖𝑥) = 𝑒𝜆𝑥𝑒𝜇𝑖𝑥 + 𝑒𝜆𝑥𝑒𝜇𝑖𝑥 
 

= 𝑒𝜆𝑥(𝑒(𝜇𝑥)𝑖 + 𝑒−𝜇𝑥𝑖) = 𝑒𝜆𝑥(2) (
𝑒(𝜇𝑥)𝑖 + 𝑒−𝜇𝑥𝑖

2
) = 2𝑒𝜆𝑥(cos(𝜇𝑥)) 

 
If I choose a constant multiplier, 𝑐1, I can use that to absorb that extra 2. 
 

𝑦1 = 𝑐1𝑒𝜆𝑥 cos(𝜇𝑥) 
 
If I subtract the two expressions I can obtain sine 



 

𝑒(𝜆+𝜇𝑖)𝑥 − 𝑒(𝜆−𝜇𝑖)𝑥 = 𝑒(𝜆𝑥+𝜇𝑖𝑥) − 𝑒(𝜆𝑥−𝜇𝑖𝑥) = 𝑒𝜆𝑥𝑒𝜇𝑖𝑥 − 𝑒𝜆𝑥𝑒𝜇𝑖𝑥 
 

= 𝑒𝜆𝑥(𝑒(𝜇𝑥)𝑖 − 𝑒−𝜇𝑥𝑖) = 𝑒𝜆𝑥(2𝑖) (
𝑒(𝜇𝑥)𝑖 + 𝑒−𝜇𝑥𝑖

2𝑖
) = 2𝑖𝑒𝜆𝑥(sin(𝜇𝑥)) 

 
2nd solution is, choosing another constant to absorb the 2i, to get  

𝑦2 = 𝑐2𝑒𝜆𝑥sin (𝜇𝑥) 
 
 
In general, if you have a complex root to your characteristic equation, then the general solution is of the 
form 
 

𝑘 = 𝜆 ± 𝜇𝑖 
 

𝑦(𝑥) = 𝑐1𝑒𝜆𝑥 cos(𝜇𝑥) + 𝑐2𝑒𝜆𝑥 sin(𝜇𝑥) 
 
In the Wronskian, you can show that these are independent. 
 
Example. 

𝑦′′ − 4𝑦′ + 9𝑦 = 0 
 

𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

 
𝑘2 − 4𝑘 + 9 = 0 

 

𝑘 =
4 ± √16 − 4(1)(9)

2(1)
=

4 ± √−20

2
=

4 ± 2√5𝑖

2
= 2 ± √5𝑖 

 

𝜆 = 2, 𝜇 = √5 
 

𝑦(𝑥) = 𝑐1𝑒2𝑥 cos(√5𝑥) + 𝑐2𝑒2𝑥 sin(√5𝑥) 

 
 
For Cauchy-Euler case. 
 
Think about pure imaginary case. 

𝑛 = ±𝑖 
 

𝑥𝑖 = (𝑒𝑙𝑛𝑥)
𝑖

= 𝑒𝑖 ln 𝑥 = cos(ln 𝑥) + 𝑖 sin(ln 𝑥) 

 
𝑛 = 𝜆 ± 𝜇𝑖 

 

𝑥𝜆+𝜇𝑖 = (𝑒ln 𝑥)
𝜆+𝜇𝑖

= 𝑒𝜆 ln 𝑥+𝜇𝑖 ln 𝑥 = 𝑒𝜆 ln 𝑥𝑒(𝜇 ln 𝑥)𝑖 = 𝑒𝜆 ln 𝑥[cos( 𝜇 ln 𝑥) + 𝑖 sin(𝜇 ln 𝑥)]  

 



 
Two solutions for the general solution are: 

𝑦(𝑥) = 𝑐1𝑒𝜆 ln 𝑥 cos( 𝜇 ln 𝑥) + 𝑐2𝑒𝜆 ln 𝑥 sin(𝜇 ln 𝑥) 
 

𝑦(𝑥) = 𝑐1𝑥𝜆 cos(𝜇 ln 𝑥) + 𝑐2𝑥𝜆sin (𝜇 ln 𝑥) 
 
You can use the Wronskian to show that these are independent and form a fundamental set. 
 
All complex roots have to come in pairs. 
 
Next time, we’ll start looking at nom-homogeneous cases. 
 
 
 
 
 
 
 
 
 
 
 
 
 


