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3. Determine if the following sets are linearly independent or dependent.
Justify your answers without performing matrix calculations. (3 points each)
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MTH 266, Exam #2, Pari; II, Fall 2018 Name

il

Instructions: Show all work. Give exact answers unless specifically asked to round. All complex

numbers should be stated in standard form, and all complex fraction

s should be simplified. If you do not

show work, problems will be graded as “all or nothing” for the answ

r only; partial credit will not be

possible and any credit ‘;awarded for the work will not be available. @n this portion of the exam, you
may use a calculator to ‘Perform elementary matrix operations. Support your answers with work
(reproduce the red uced% matrices from your calculator) or other justification for full credit.

1. Determine if each statement is True or False. (1 point ea¢

h)

a. ( T) If matrix B is formed by multiplying a row of matrix A by 4, then
detB = 4det A
b. @ |F The equation Ax = 0 has only the trivial solution if and only if there
are no free variables. :
o] T @ If an m x n matrix has a pivot in evéry row, then the equation Ax = b
I i & H m -, f
has a unique solution for each b in R™. E hbtesodal W“"E ”
d. ( T) F If {u, \A w} is linearly independent, then u, v, and w are not in RZ.
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e. D F If Aand B are m x n matrices, then both AB" and A" B are defined.
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f. (J T) F If two rows of a 3 x 3 matrix A are the same, then det A = 0.
& T } F If {v,, S vp} is linearly independent, then so is {vl, —_— vp_l}.
h. T @ The pivot columns of a matrix are always linearly dependent.
i T @ The rank of a matrix is defined by theé dimension of the null space.
i T @ If det A is zero, then two rows or twd columns of A are the same, or a
‘ row or a column is zero. .
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k. T @ If A and B are row equivalent, then their column spaces are the same. WS
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n. T G) If 7, is the change-of-coordinates matrix, then [xl =P, x for x iT—JJV'
| 5
1 pﬁfx]e =X
x T @ The equilibrium vector for a stochastic matrix is always unique.




2. Determine if the columns of 4 =

your answer. (6 points)
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4. Determine if the set H = 71,1 1[5 formsa basisf*r R-, Justify your answer.
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7. Given the bases B = {b1, by, b3} and € = {c,, Cy,C3} below, End the change of basis matrices

CPH and BP(_ - If the B-coordinate vector for x is as shown, fin ] the C-coordinate vector for x .
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