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MTH 266, Exam #1, Part |l; Fall 2018 Name [

Instructions: Show all work. Give exact answers unless specifically ask
numbers should be stated|in standard form, and all complex fractions ¢
show work, problems will be graded as “all or nothing” for the answer
possible and any credit awarded for the work will not be available. On
may use a calculator to perform elementary matrix operations. Suppo
(reproduce the reduced matrices from your calculator) or other justifia

6. Determine if each/statement is True or False. (1 point each
The homogeneous system Ax = 0 is always consistent.

a. 0
b (T
c T
d T
e T
N
f T
g T
~\
h T\
j T

F

If Aisa mxn matrix that has m pivot
Ax =b is consistent for all b in R .

Any set of vectors containing the zero

Matrix multiplication is commutative.

A 5x 7 matrix has 7 columns.

If a system of equations has a free var

-

ed to round. All complex

should be simplified. If you do not
only; partial credit will not be

this portion of the exam, you

rt your answers with work

ation for full credit.

columns, then the equation

vector is linearly independent.

/! .‘4¢i£’/;—.-.j VT

able then it has a unique solution.

S

x ’j - O i
If Aisa 77X #n matrix, then A is invertille.

If Aisa mxn matrix, then 4] = A @

2 6
=11, —3 | form alinearly depend
3 9 ':"."/--""_,-"-.'/, 1

f: R - Rdefined by f(x) = 2x + 3

=

nd I A=A.

ent set.

is a linear transformation.

i v
VOl
o




of the system is cc

independent or d
solution in param

H%;p[/’@ J

Find the general s

\

X —2x, +4x, +5x =2

olution to the system B I8 —Xy
6x,—8x =6

nsistent or inconsistent. If the system is co:Fist_ent, state whether it is

23|~

pendent. Write an independent solution in

etric form. Circle the pivots of the reduced matrix. (8 points)

Qo W"J*

. O - ;&/)W
94 e 2 v @ =
X\ "’2}(3 .‘;G? b 2?\3 -t-‘j[ -
. , . 2"
)(-2, - 5.* 3 = té/ﬁ — Poas Srs 1 P’/; A " = 3 \
=) >& . X ‘3 A ! 1 \ ?(3
A3 = X3 4 T L ©
Xy =% a *’%’)
A i -4 -14
8. Determineif b=| 9 |[isinthe spanofthe columnsof 4| 0 3 12
14 -2 8 28

If it is, write b as a lines

S S | I s 1 ofa | & ]
A T IREE > o Jo ' ¢
({J A u/ x TR Spud
A d [ _ ‘}»J/f
J
) '3 -1]* _4] Tz \5
1 - v '8 )} ':;,) —\ O ,/f.\-.
p i v 3 Lz8 |

r combination of the columns of A; if not, e blain why it is not. (8 points)

=4 . State whether the solution

vector form; write a dependent




1 4 =30
9. LetA=|-2 -7 5
-4 F 7 3

a. Determine if
your answer.

I.
‘. %h‘(z]’//" v&

Léltim )

o2l

(4 points)

If/’j/‘ Jf'/ﬁ,ll ?j/r/r/'}; "-;;/ f fk"-‘
L/ /p",f
Lotz | T © © =3

rf) ‘} Q | » &) ﬂj

T S ® 2
o span WL madve abwve wd

A ////UU’?' {

10. Given T: R® —» R?

following.

a. lIs TontoR3?

Yo, el
(

b. Is T one-to-on

*X LA o)

lrwb’f

Justify your answer. (4 points)

e? Justify your answer. (4 points)

L 50 kAl a ‘[)f/‘fr&/{ z ﬂﬂﬁ-i#)jzj‘ri»
(

) |
polirn hooa poit, i

FL

|

-1
I =1 3
4

A j}u_, i'_,}‘w‘.,,'.

' L
b. Determine if the columns of A span R3. Justify your anszr. (4 points)

the columns of A form a linearly independerﬁ or dependent set and justify

Ii{ (/v C LA (R hs

, answer the




11. Consider the tran

0 AT Ggoe T

—

Sunei T(fq

Qbfﬂt Caue
Sercs TCLH
| l

gl Tlo) = |

12. Use an inverse matrix to solve {

r}._;l}! 0 -2
;-5 1
A7 [S 3
. lo 4y

Ya 3/

o '8 3
‘f‘] IES [}u 4
: 5 %

Yoad TUt) = KTF) T

- JF . Pile |
’ja ( flyrale))Ax = Jo oo
/,17“,/707,@1;,5 ‘/‘b("'g“”“’c"‘ '

<

- [eftodn - k[ P 4 - LT

ﬂ{é’dx -0,

X, —-2x, =1

=341, +4%, =—5 (8 points)

2x,—3x,+4x, =8




13. The invertible m
invertible. Name

e 14
KA—‘& nxn
pra
H hao 4
H hao d
A reduc
e cob

14. Answer the follov
a. Ifalineartra
between m a

b. IfT is one-to

——

C.
the columns

AadS (1

%’ﬁoénxn
%-ﬂwﬁ/
’/Vl/r

A* wd

(:6;42 0 WWWMWZ&WMW

|

|

atrix theorem states that several statementsiare equivalent to matrix 4 being
2 5 of these equivalent statements. (10 poin L

é"wu C&U,«éfﬂfm ) / Cl()"l&ﬂé(, - ¢ ’
Had: s el
hoao akey T st 5o N 2
Ll om0t Colicenr l

| povvt en Loty eos '_
m/)wé 74 MJA&% L J;-/f AL

A

|
ving questions as fully as possible, and justify your answer. (4 points each)

nsformation T: R® — R™ maps R™ onto R™, £an you give a relationship
nd n? B

vl £n
-one what can you say about m and n?
e

i

Explain why the columns of A2 (defined by matrix multiplication as AA) span R™ whenever

of an n X n matrix A are linearly independent.
7

! ﬂm AH’ =A% O ‘ | 5
W»Zy W 1/, | Ao A w0 vrves
L rwtzx V%V'My @v/ ;1‘ u’/ o f’fo - A (.i/p«-pt dm[lo m
ou-h -t 9ad 0, and > 2o b roeklte
‘ wdepperdent Do

d

A



d.

e.

How many p

IfAisa2 Xt
s0, is it trivia

A

A5

!

vot columns must a 6 X 4 matrix have if its ¢olumns span R*.

» matrix with two pivot positions, does the e

4

or non-trivial?

uation Ax =0 have a solution? If




