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MAT 202, Exam #3, Part |,|Fall 2016 Name K:E ]/

Instructions: Show all work. You may not use a calculator on this portion of the exam. Give exact
answers (yes, that means fractions, square roots and exponentials, and not decimals). Reduce as much
as possible. Be sure to complete all parts of each question. Provide explanations where requested.

When you are finished wiFh this

a. T

portion of exam, get Part Il

The dot product of two vectors i and ¥ is another vector represented by

1. Determine if each|statement is True or False. (1 point each)
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If i - ¥ < 0, then the angle 8 between i and # is obtuse.

A nonzero vector in an inner product space can have a norm of zero.

The norm of the vector 1 is defined as the angle between the vector
and the positive x-axis.

An orthonormal basis derived by the Gram-Schmidt orthonormalization
process does not depend on the order of the vectors in the basis.

A set S of vectors in an inner product space V is orthonormal when
every vector is a unit vector and each pair of vectors is orthogonal.

The set of all vectors orthogonal to every vector in a subspace S is called
the orthogonal complement of S and is designated by S*.

For polynomials, the differential operator D, is a linear transformation
from B, = P,,_4.

The vector spaces R* and P, are isomorphic to each other. 2.~ .

Any linear function of the form f(x) = ax + b is a linear transformation

from R — R. Wﬁo‘& Qirgper Feors <.6 b#o
The nullity is the number of free variables in a matrix.

The range of a linear transformation from a vector space V into a vector
space W is a subspace of V. &Jgapau ‘b\.\)

The matrix of a linear transformation is defined by the effects of the
transformation on the basis vectors of the space.
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, find the following: (2 points each)

i and ¥ orthogonal? If not, is the angle between the vectors acute or obtuse?
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3. Prove that the rotation matrix 4 = [(;?r?g _Cilngg] has orthonormal columns, and A~ = A”.
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5. Determine if T: R?

counterexample
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f it is not, and state the property that is violated. (5 points)
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6. Use Gram-Schmidt to find an orthogonal basis for the space spanned by [H ; [—1] ; [1” (7 points)
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7. ForW = span _21 ; é , find the projection of ¥ = é Lnto W, and its orthogonal
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complement in W+. (5 points) :
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8. Write the matrix|for the linear transformation for the linear transformation given by T(x*) =
f;c t*dt on the standard basis for P, = Ps. Is the transformation onto? (5 points)
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9. Given the vector|ii = [_23] and the transformations described below, write the matrix of the

transformation and apply it to é and graph both 1 and A. (2 points each)
a. Reflection over the x-axis
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Vertical stretch by a factor of 3
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MAT 202, Exam #3, Part

Instructions: Show all w
calculator problems, sho

e

rk. You may use a calculator on this portion of the exam. To show work on
the commands you used, and the resulting matrices. Give exact answers

I, Fall 2016 Name

(yes, that means fractionls, square roots and exponentials, and not decimals) unless specifically directed
to give a decimal answer. This will require some operations to be done by hand even if not specifically

directed to. Be suretoc

1. Given the linear

kernel and range

omplete all parts of each question. Provide explanations where requested.
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transformation defined by A = 2 3 4 4 20 , find a basis for the

0 6 1 2 8
of the transformation. (6 points)
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2. Given the linear transformation definedbyA=|2 3 5 0 0], determine if the
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transformation is
a. One-to-one
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any of the following. Explain your reasoning in each case. (2 points each)
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3. GivenT| [X3 =

Xs

X1 = Xy
X3 — X .
X1 + 2x; — x4 |. Write the matrix of the transformation. Explain why this
3.7(.'3 + X4
0

proves the transformation is linear. If T~ exists, find its matrix. If it is not invertible, explain

why not. (6 points
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4. Let Abeann x n matrix such that A% = [0]. Prove that if A i§ similar to B then B2 = [0]. (4 points)
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5. ConmderS—span{[i] [3‘} Find an orthogonal basisfquL. (5 points)
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7. Consider a generic 8 X 6 matrix. Is it possible for the linear transformation defined by the

matrix to be:

a. One-to-one? (2 points)

b. Onto? (2 poi
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has 6 pivots, what is the dimension of the kernel and the range? (4 points)
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9. Given an exampl
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e of an isomorphism from R* — R*. (2 points)

Mm%m:amtf;

WMM
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) illustrate how a linear transformation maps the domain into the codomain. Be
your drawing the kernel, the G in both sets, and the range. (4 points




