MAT 202, Exam #2, Paqt l, Fall 2016 Name KEY

Instructions: Show g work. You May not use a calculator o
answers (yes, that means fractions, square roots and €Xponentials, and not deci

as possible. Be sure to tomplete all parts of each question. Provide explanati
When you are finished with this portion of exam, get Part Ji.

1. Determine if e A.statement is True or False. (1 point each)
a. T F The ij-cofactor of Square matrix 4 is defined by deleting the ith column

and jth row of the matrix. - 3
ith rav, Jfﬁ ol

b. @ F When expanding by cofactors, you neeq not evaluate cofactors of zero
entries,

Multiplying a column of a matrix by a nonzero constant results jn changing
the determinant by the same nonzero constant,

d. T @ If two matrices are column—equivalent, then their determinants are the

. same. Jome Colimm epeialian, Charg Actornnant
IfAis invertible, then the determinant of 4-1 js the reciprocal of the
determinant of 4.

If Aand B are Square matrices of order n, and |Al = |B], then
|AB| = |4?|.

F !
F
g. T @ If A'is a square matrix of order n, then det(4) = —det(4AT). pef "4%11':4’(’

In Cramer’s Rule, the denominator is the determinant of the matrix
formed by replacing the column corresponding to the variable being

solved for with the column representing the constants. Pvrnaloy

F Two vectors in R™ are equal if and only if their corresponding
components are equal.

and two operations.

@ The set of all first degree polynomials with the standard operations is 3

vector space. MJJWM( 2—‘6?01/‘60&37

F Every vector space contains at least one subspace that is the zero
vector. :

j. @ F A vector space consists of four entities: a set of vectors, a set of scalars,
T
T

@ If U,V and W are vector spaces such that Wis a subspace of IV and U/ is
a subspace of V, then W = U,




F If a subset S spans a vector space V, then every vector in V can be
written as a linear combination of the vectors in S.

0. @ F The dimension of M 3 is six.
T
T

41 -1
(; F) The set of vectors HS} ,l 1 B is linearly dependent.
0 1 .
_ | mlbf:&njmf

F The dimension of a vector space is eqpal to the number of vectors in
any basis for the space. ‘

1

@ The number of pivots plus the num b@r of free variables in a matrix
equals the number of rows of the matrix. '
! aaétmmo

s. T F The column space of a matrix 4 is eql%al to the row space of A”.

Foran 4 X 1 matrix X, the coordinatq3 matrix [X ] relative to the standard
basis for M ; is equal to X itself. ‘

—
g ]

2 -1 3 3
Find the determinant of the matrix {1 4 4] by the cofact:or method. (5 points)
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4. Use properties of determinants and 4 = [3 11] ,det(B) = —4 to find: (2 points each)
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+ 47. (2 points)




6. Graph the parallelogram with vertices A(1,0),B(3,3), £15,
d explain how this illustrates the parallelogr:
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8. Determine by ir
(2 points each)
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MAT 202, Exam #2, Part II, Fall 2016 Name

Instructions: Show all

calculator problems, sh
(yes, that means fractio
to give a decimal answe
directed to. Be sure to ¢

ork. You may use a calculator on this portio
w the commands you used, and the resulticj

S, square roots and exponentials, and not
r. This will require some operations to be d
‘omplete all parts of each question. Provide

2x1 + 3x;, + 5x,
1. Use Cramer’s Rule to solve the system { 3x1 + 5x, + 9x3
5% + 9xy + 17x5

matrices. You may use your calculator to find the required d
solution as a vector. (5 points)
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3. Find the volum
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9. List 5 different vector spaces (or subspaces) which are 5-dimensional. (5 points)
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