Instructions: Show all work. Answers without work required to obtain the solution will not receive full credit. Some questions may contain multiple parts: be sure to answer all of them. Give exact answers unless specifically asked to estimate.

1. Set up a triple integral for the solid enclosed by $x^2 + z^2 = 4$, y = -1, y + z = 4.

answers may vary

2. Evaluate $\int_{-2}^{2} \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} \int_{\sqrt{x^2+y^2}}^{2} xzdzdxdy$ by switching to cylindrical or spherical coordinates.

$$\int_{0}^{2\pi} \int_{0}^{2} \int_{r}^{2} zr^{2} \cos \theta \, dz \, dr \, d\theta$$

Cylindrical

3. Use the Fundamental Theorem of Line Integrals to evaluate $\int_C 2xe^{-y}dx + (2y - x^2e^{-y})dy$ on any path from (1,0) to (2,1). Be sure to confirm that the field is conservative.

$$\frac{\partial M}{\partial y} = -2xe^{-y}$$
Conservative
$$\frac{\partial N}{\partial x} = -2xe^{-y}$$

$$\int 2xe^{-y}dx = x^{2}e^{-y} + g(y)$$

$$\int 2y - x^{2}e^{-y}dy = y^{2} + x^{2}e^{-y} + h(y)$$

$$f(x,y) = x^{2}e^{-y} + y^{2} + K$$

$$f(2,1) - f(1,0) = 2^{2}e^{-1} + 1^{2} - (1^{2}e^{0} + 0^{2}) = \frac{4}{6} + 1 - 1 + 0 = \left[\frac{4}{6}\right]$$