Instructions: Show all work. Answers without work required to obtain the solution will not receive full credit. Some questions may contain multiple parts: be sure to answer all of them. Give exact answers unless specifically asked to estimate.

1. Find the first three non-zero terms of the Maclaurin series of the function $f(x) = \sinh x$. Sketch the graph of these terms compared to f(x).

					¥
n	n!	$f^{(n)}(x)$	$f^{(n)}(c)$	$(x-c)^n$	$\frac{f^{(n)}(c)}{n!}(x-c)^n$
0	1	Sihn¥	0	1	우(1)=0
1	1	Coshx	1	(x)	1× = ×
2	2	Sinhy	0	Xz	2x2=0
3	6	Cosh×	ı	X ³	6×3
4	24	Sinhx	0	X4	0
5	120	Cashx	ı	x5	120 XS
6	720	Sinhx	0	× 6	0

$$P_n(x) = X + \frac{1}{6}X^3 + \frac{1}{120}X^5 + \cdots$$

2. If $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ and $\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$, find the first 5 terms of the Taylor series for $f(x) = e^{-x} \sin x$.

$$(1-x+\frac{x^2}{2}-\frac{x^3}{6}+\frac{x^4}{24}-...)(x-\frac{1}{6}x^3+\frac{1}{120}x^5-\frac{1}{5040}x^7...)$$

$$= X + X^2 + \frac{1}{3}X^3 - \frac{1}{30}X^5 + \frac{7}{360}X^6 + \dots$$