Instructions: Show all work. Answer each question as completely as possible. Use exact values (yes, that means fractions!).

1. Determine if the set of vectors $\left\{\begin{bmatrix} 3\\-2\\3 \end{bmatrix}, \begin{bmatrix} -1\\3\\-3 \end{bmatrix}, \begin{bmatrix} 3\\8\\7 \end{bmatrix}\right\}$ is mutually orthogonal.

$$\vec{V}_1 \cdot \vec{V}_2 = -3 - 6 - 9 = -18$$
 $\vec{V}_2 \cdot \vec{V}_3 = -3 + 24 - 21 = 0$

$$\vec{\nabla}_1 \cdot \vec{\nabla}_3 = 9 - 16 + 21 = 14$$

the others are not.

2. If $\vec{y} = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$, write this vector as orthogonal components \vec{y}_{\parallel} and \vec{y}_{\perp} relative to the subspace $W = \{\begin{bmatrix} 7 \\ 1 \end{bmatrix}\}$.

$$\frac{14+b}{49+1} = \frac{20}{50} = \frac{2}{5}$$

$$y_{11} = \frac{2}{5} \begin{bmatrix} 7 \\ 1 \end{bmatrix} = \begin{bmatrix} 14/5 \\ 4/5 \end{bmatrix}$$

$$\lambda^{T} = \begin{bmatrix} 9 \\ - \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 5/2 \\ -1/2 \end{bmatrix}$$