Instructions: Use the chain rule (possibly more than once) to find the derivative of the following composite functions.

1.
$$h(x) = \sec^3(x^2)$$

 $h'(x) = 3\sec^2 x^2 \cdot \sec(x^2)\tan(x^2)$
 $= 6x \sec^3(x^2) \tan(x^2)$

2.
$$f(x) = \cos(\sqrt{\sin(\tan \pi x)})$$

 $f(x) = \sin(\sqrt{\sin(\tan \pi x)})$ 2. $\sqrt{\sin(\tan \pi x)}$ cos $(\tan \pi x)$. See $\pi x \cdot \pi$

3.
$$g(x) = \ln^5(\ln(x\cos(x)))$$

 $g(x) = 5 \ln^4(\ln(x\cos(x))) \cdot \frac{1}{\ln(x\cos(x))} \cdot \frac{1}{x\cos(x)} \cdot (\cos(x) + x(-\sin(x)))$

4.
$$p(x) = e^{e^{x^2+5}}$$

$$p'(x) = e^{x^2+5} \cdot e^{x^2+5} \cdot 2x$$

5.
$$q(\mathbf{t}) = 3^{\sin^2(\frac{t}{4})}$$

 $g'(\mathbf{t}) = (\ln 3) 3^{\sin^2(\frac{t}{4})}$. $2 \sin(\frac{t}{4}) \cos(\frac{t}{4}) \cdot \frac{1}{4}$

6.
$$r(x) = (8x^3 + e^{x^3})^{\frac{4}{7}}$$

 $r'(x) = \frac{4}{7}(8x^3 + e^{x^3})^{-\frac{3}{7}}(24x^2 + 3x^2 - e^{x^3})$