KEY

Math 2568, Final Exam - Part I, Fall 2013

**Instructions**: On this portion of the exam, you may **NOT** use a calculator. Show all work. Answers must be supported by work to receive full credit.

1. The system shown below is in vector equation form.

$$x_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

a. Write the system as a matrix equation. (3 points)

$$\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

b. Solve the system by using an inverse matrix. Write the solution as a column vector. (8 points)

$$A^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}$$

Det 
$$A = 2 + 1 = 3$$

$$\frac{1}{3} \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 47 \\ 57 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 4+57 \\ -4+10 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 97 \\ 6 \end{bmatrix} = \begin{bmatrix} 37 \\ 2 \end{bmatrix} = \begin{bmatrix} 17 \\ 17 \end{bmatrix} = \begin{bmatrix} 17 \\ 17 \end{bmatrix}$$

c. Use the solution you obtained and graphically represent it on a graph as the linear combination of the vectors  $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$  and  $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ . Be sure to show the coordinate gridlines on your graph. (6 points)



2. Find the determinant of the matrix 
$$A = \begin{bmatrix} 5 & 3 & 0 \\ 2 & -3 & 4 \\ 1 & 0 & 1 \end{bmatrix}$$
 by any means. (7 points)

$$\begin{vmatrix} 1 & 3 & 0 \\ -3 & 4 \end{vmatrix} + 1 \begin{vmatrix} 5 & 3 \\ 2 & -3 \end{vmatrix} = (12 + 0) + (-15 - 6) = 12 + (-21) = -9$$

3. Find the QR factorization of the matrix A, given that 
$$A = \begin{bmatrix} -2 & 1 \\ 4 & 7 \\ -2 & 1 \\ -5 & -5 \end{bmatrix}$$
 and  $Q = \begin{bmatrix} -2/7 & \sqrt{3}/3 \\ 4/7 & \sqrt{3}/3 \\ -2/7 & \sqrt{3}/3 \\ -5/7 & 0 \end{bmatrix}$ . In other words, find R. (8 points)

$$\begin{bmatrix} -2/7 & .4/7 & -2/7 & -5/7 \\ \sqrt{3}/3 & \sqrt{3}/3 & \sqrt{3}/3 & 0 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ 4 & 7 \\ -2 & 1 \\ -5 & -5 \end{bmatrix} =$$

4. For the matrix 
$$A = \begin{bmatrix} -5 & 10 & 4 & 14 \\ -7 & 11 & 5 & 13 \\ -3 & 4 & 4 & 5 \\ 2 & -2 & -2 & -1 \end{bmatrix}$$
. The eigenvalues are  $\lambda = 1, 2, 3$  Find the repeated voot eigenvectors corresponding to each eigenvalue and determine if the matrix is diagonalizable. Level (20 points)

(20 points)
$$\lambda_{1}=1 \begin{bmatrix} -6 & 10 & 4 & 14 \\ -7 & 10 & 5 & 13 \\ 2 & -2 & -2 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \lambda_{1}=\begin{bmatrix} -1 \\ -2 \\ 0 \end{bmatrix}$$

$$\lambda_{2}=2\begin{bmatrix} -7 & 10 & 4 & 14 \\ -7 & 9 & 5 & 13 \\ 2 & -2 & -2 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \lambda_{2}=\begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$6R_{1} + R_{2} \rightarrow R_{2}, R_{4} \leftrightarrow R_{3}, 3R_{2} + 4R_{4} \rightarrow R_{4}, \frac{1}{4}R_{4} \rightarrow R_{4}$$
and
change
$$(-1) \quad *4 \quad (')4)$$

6. Determine if the set formed by polynomials of the form 
$$p(t) = a + bt + t^2$$
 is a subspace of  $P_n$ . If it is, prove it. If it is not, find an example to the contrary. (6 points each)

it is not a subspace
$$p(t) = a + bt + t^{2} \Rightarrow p+g = (a+c) + (b+d)t + \partial t^{2}$$

$$g(t) = c + dt + t^{2} \Rightarrow \text{Not in}$$
Subset

7. Consider the orthogonal basis for  $\mathbb{R}^3$  given by  $\left\{\begin{bmatrix} -1\\1\\3 \end{bmatrix}, \begin{bmatrix} 0\\3\\-1 \end{bmatrix}, \begin{bmatrix} 10\\1\\3 \end{bmatrix}\right\}$ . Use the property of

Orthogonality to find the coordinate representation of the vector  $\vec{x} = \begin{bmatrix} 5 \\ 7 \\ -1 \end{bmatrix}$  in this basis. [Hint: no matrices are required.] (15 points)

[X]<sub>B</sub> = | -1/11 | 1/5 | 27/55 |

$$C_1 = \frac{-5+7-3}{1+1+9} = \frac{-1}{11}$$

$$C_2 = \frac{0+21+1}{9+1} = \frac{22}{10} = \frac{11}{5}$$

$$C_3 = \frac{50+7-3}{100+1+9} = \frac{54}{110} = \frac{27}{55}$$

1. Given the vectors 
$$\vec{u} = \begin{bmatrix} 3 \\ -1 \\ 4 \\ 5 \end{bmatrix}$$
,  $\vec{v} = \begin{bmatrix} -2 \\ 6 \\ 3 \\ 7 \end{bmatrix}$  find the following.

a. A unit vector in the direction of  $\vec{v}$ . (4 points)

b. Find the distance between  $\vec{u}$  and  $\vec{v}$ . (7 points)

$$\begin{bmatrix}
3 - (-2) \\
-1 - 6 \\
4 - 3 \\
5 - 7
\end{bmatrix} = \begin{bmatrix}
5 \\
-7 \\
1 \\
2
\end{bmatrix}$$

1171 = 14+36+9+49 = 198

8. Show that the polynomials f(t)=1-2t, and g(t)=8+3t are orthogonal under the inner product  $< f,g>=\int_{-2}^2 f(t)g(t)dt$ . (10 points)

$$\int_{2}^{2} (1-2+)(8+3t)dt = \int_{2}^{2} 8 - 16t + 3t - 6t^{2} dt = 2 \int_{0}^{2} 8 - 6t^{2} dt$$

yes, they are outhogonal

- 9. Determine if the following sets of vectors are linearly independent by inspection. Justify your
  - a.  $\left\{\begin{bmatrix}1\\1\\0\\0\end{bmatrix},\begin{bmatrix}0\\1\\1\end{bmatrix}\right\}$  Zero vector not independent
  - b.  $\{\begin{bmatrix} 1\\1\\1\\0\end{bmatrix}, \begin{bmatrix} 1\\2\\0\\3\end{bmatrix}, \begin{bmatrix} -2\\-4\\0\\-6\end{bmatrix}, \begin{bmatrix} 3\\5\\2\\1\end{bmatrix}\}$   $\vec{V_3} = -2\vec{J_2}$  dependent
  - c. {[2],[1]} 2 vectors, not multiples, independent
- 10. Consider the stochastic Markov chain matrix given by the matrix  $A = \begin{bmatrix} .9 & .05 \\ .1 & .95 \end{bmatrix}$ . Calculate the equilibrium vector of the system. (5 points)

$$\vec{\chi} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
  $1+2=3 \rightarrow \vec{g} = \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \end{bmatrix}$ 

| 11. Determine if each | statement is True or False. (3 points each)                                                                                                                                                                                       |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a. T                  | If vectors $\overrightarrow{v_1}$ , $\overrightarrow{v_2}$ , $\overrightarrow{v_p}$ span a subspace W and if $\vec{x}$ is orthogonal to each $\overrightarrow{v_j}$ for j=1p, then $\vec{x}$ in W <sup><math>\perp</math></sup> . |
| b. T F                | If $\vec{y}$ is in a subspace $W^{\perp}$ , then the orthogonal projection of $\vec{y}$ onto $W$ is $\vec{y}$ itself.                                                                                                             |
| c. T F                | Every eigenvalue has only one corresponding eigenvector.                                                                                                                                                                          |
| d. T                  | Both $\begin{bmatrix} 1 & * & * & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 1 & * & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 0 & 1 \end{bmatrix}$ are matrices in echelon form.                            |
| e. T F                | If A is a 3x5 matrix, then the transformation $\vec{x} \mapsto A\vec{x}$ can be onto but not one-to-one. $\leq \rho \text{ Nok}$ .                                                                                                |
| f. T F                | If a system of equations has a free variable then it has a unique solution.                                                                                                                                                       |
| g. T F                | The <u>complex eigenvalues</u> of a discrete dynamical system either both attract to the origin or both repel from the origin.                                                                                                    |
| h. T                  | If two vectors are orthogonal, they are linearly independent.                                                                                                                                                                     |
| i. T                  | $\{ \overrightarrow{0} \}$ is a subspace.                                                                                                                                                                                         |
| j. T F                | The third standard basis vector $\overrightarrow{e_3}$ in $P_6$ is $t^3$ . That is $\overrightarrow{e_4}$                                                                                                                         |
| k. T F                | The null space of a matrix is a subspace of the codomain of the matrix.                                                                                                                                                           |
| I. T F                | If A is diagonalizable, then A is invertible.                                                                                                                                                                                     |
| m. T F                | A matrix is invertible if and only if 0 is an eigenvalue of A. $\lambda \neq \bigcirc$                                                                                                                                            |
| n. T F                | If the columns of A are linearly independent, then the equation $A\vec{x} = \vec{b}$ has an infinite number least-squares solutions, or none at all.                                                                              |
| 0. (T) F              | A least-squares solution of $A\vec{x} = \vec{b}$ is the point in the column space of A closest to $\vec{b}$ .                                                                                                                     |
| p. T                  | An isomorphism is a linear mapping from one n-dimensional space into another space of the same number of dimensions.                                                                                                              |
| q. T F                | A matrix given by $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ has a unique solution if $ad-bc=0$ . She he                                                                                                                      |
|                       | <b>≠</b> 0                                                                                                                                                                                                                        |

Math 2568, Final Exam - Part II, Fall 2013

**Instructions**: On this portion of the exam, you *may* use a calculator to perform elementary matrix operations. Support your answers with work (reproduce the reduced matrices from your calculator) or other justification for full credit.

1. Find a least squares solution for the set of points  $\{(1,0.7),(2.1,2.9),(2.2,4.8),(3.1,9.7),(4.4,18.3),(5.3,28.8)\}$  to satisfy the equation any equations, and the final regression function for v. (15 points)

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2.1 & 2.1^{2} \\ 1 & 2.2 & 2.2^{2} \\ 1 & 3.1 & 3.1^{2} \\ 1 & 4.1 & 4.4^{2} \\ 1 & S.3 & S.3^{2} \end{bmatrix} \qquad b = \begin{bmatrix} .7 \\ 2.9 \\ 4.8 \\ 9.7 \\ -18.3 \\ 28.8 \end{bmatrix}$$

$$\overrightarrow{AA} \overrightarrow{R} = \overrightarrow{A'B}$$

$$\overrightarrow{R} = (\overrightarrow{A'A})'\overrightarrow{A'B}$$

$$\begin{array}{c}
\overrightarrow{X} = \begin{bmatrix}
0.28 \\
-.73 \\
1.14
\end{bmatrix}$$

$$y = .28 - .73x + 1.14x^2$$

2. Given the vectors  $\overrightarrow{b_1} = \begin{bmatrix} 3 \\ 1 \\ 8 \\ 2 \end{bmatrix}$  and  $\overrightarrow{b_2} = \begin{bmatrix} 1 \\ -3 \\ 2 \\ -8 \end{bmatrix}$ , find two more vectors orthogonal to these (and each other) to make an orthogonal basis for  $\mathbb{R}^4$ . (15 points)

$$\begin{bmatrix} 3 & 1 & 8 & 2 \\ 1 & -3 & 2 & -8 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 13/5 & -1/5 \\ 0 & 1 & 1/5 & 13/5 \end{bmatrix} \Rightarrow \begin{bmatrix} -13 \\ -1 \\ 5 \end{bmatrix} \cdot \begin{bmatrix} 13 \\ 0 \\ 5 \end{bmatrix}$$

3. The set 
$$H = \left\{ \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\-2 \end{bmatrix} \right\}$$
 forms a basis for  $\mathbb{R}^3$ . Use the Gram-Schmidt Process to  $\mathbb{R}^3$ . The set  $\mathbb{R}^3$  is the Gram-Schmidt Process to  $\mathbb{R}^3$  is the Gram-Schmidt P

$$V_{2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} - \frac{0+0-1}{3} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \frac{1}{3} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} y_{3} \\ y_{3} \\ 2y_{3} \end{bmatrix} \qquad V_{2} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$V_{3} = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix} - \frac{1+2+2}{1+1+1} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix} + \frac{11}{6} \begin{bmatrix} 1 \\ 2 \end{bmatrix} - \frac{5}{3} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1/2 \\ 1/3 \end{bmatrix} + \begin{bmatrix} -5/3 \\ -9/3 \\ -7/3 \end{bmatrix} = \begin{bmatrix} -1/2 \\ 1/2 \\ -7/3 \end{bmatrix} = \begin{bmatrix} -1/2 \\ 1/2 \\ 0 \end{bmatrix}$$

outhogoral basis 
$$\{[i],[i],[i]\}$$

4. Given the basis of 
$$W = \begin{cases} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 2 \end{bmatrix} \end{cases}$$
, and the vector  $\vec{y} = \begin{bmatrix} 5 \\ 2 \\ -1 \\ 0 \end{bmatrix}$  decompose this vector into  $\vec{y} = \vec{y} = \vec{y} + \vec{y} + \vec{y} + \vec{y} = proj_w \vec{y}$ . (15 points)

$$\frac{7}{2} = \frac{5+2+0+0}{2} \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} + \frac{0+0-1+0}{5} \begin{bmatrix} \frac{0}{3} \\ \frac{1}{2} \end{bmatrix} = \frac{7}{2} \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} + \frac{-1}{5} \begin{bmatrix} \frac{0}{3} \\ \frac{1}{2} \end{bmatrix}$$

$$\begin{bmatrix}
\frac{1}{2} - 0 \\
\frac{1}{2} - 0 \\
0 - \frac{1}{2}
\end{bmatrix} = \begin{bmatrix}
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{bmatrix}$$

$$\frac{-7}{y_1} = \begin{bmatrix} 5 \\ 2 \\ -1 \\ 0 \end{bmatrix} - \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{3}{2} \\ -\frac{3}{2} \\ -\frac{4}{5} \\ \frac{2}{5} \end{bmatrix}$$

5. Assume that 
$$A = \begin{bmatrix} 1 & 3 & 0 & 5 & 0 & 3 \\ 2 & 2 & -1 & 2 & 2 & -5 \\ 1 & -1 & 3 & -3 & 1 & 9 \\ 5 & 4 & 1 & 3 & 1 & 7 \end{bmatrix}$$
. Find a basis for the null space of  $A$ . (10 points)

$$YY = A = \begin{bmatrix} 1 & 0 & 0 & -1 & 0 & 5/19 \\ 0 & 1 & 0 & 2 & 0 & 52/57 \\ 0 & 0 & 1 & 0 & 0 & 2 & 17/57 \end{bmatrix}$$

$$X_1 = X_4 - 5/19 X_6$$

$$X_2 = -2X_4 - 52/57 X_6$$

$$X_4 = X_4$$

$$X_5 = X_4$$

$$X_6 = 57S$$

$$X = X_6 = 57S$$

$$X = \begin{cases} -15 \\ -52 \\ -217 \\ 0 & 1 \\ 0 & 1 \end{cases}$$

$$X_6 = 57S$$

$$X_7 = \begin{cases} -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\ -15 \\$$

6. Based on the graph below, solve the system for the circuit flowing through each loop. You may round your answers to three decimal places as needed. (10 points)

$$8I_{1} - 3I_{2} - 4I_{4} = 40$$

$$-3I_{1} + 11I_{2} - 6I_{3} = 30$$

$$-6I_{2} + 14I_{3} - 5I_{4} = 20$$

$$-4I_{1} - 5I_{3} + 18I_{4} = -10$$

$$\begin{bmatrix} 8 & -3 & 0 & -4 & | & 40 \\ -3 & 11 & -6 & 0 & | & 30 \\ -4 & 0 & -5 & 13 & | & -10 \end{bmatrix}$$

$$\begin{bmatrix} 11.824 \\ 10.293 \\ 7.957 \\ 5.930 \end{bmatrix}$$
ov
$$\begin{bmatrix} 23.850/2017 \\ 20.760/2017 \\ 11960/2017 \end{bmatrix}$$



| 7. The following are short answer questions. Always provide justification for any answers. You may use examples as part of your explanations, but if you are asked to "explain" your answer must contain words. (4 points each)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a. Give an example of a 5x5 matrix with a non-trivial solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| and the state of t |
| [10 100] answers will rang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| b. Why must an august at the state of the st |
| b. Why must an nxn matrix have n <b>distinct</b> eigenvalues to guarantee that the eigenspace spans $\mathbb{R}^n$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| each eigenvalue quarantees only one desenvector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| repeated eigenvalues from The characteristic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| each eigenvalue quarantees only one eigenvector repeated eigenvalues from The characteristic equation are not quaranteed to produce more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| than one deservector & you need a vector to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| form a basis for TRN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| c. Give two properties of the invertible matrix theorem and explain why they must be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| equivalent to each other.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| answers will sand.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| answers will vary: an investible matrix reduces to the uxn identity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| which has a non-zero determinant now operations can which has a non-zero determinant by magnified or sign, but cannot make it zero. A native that Cannot reduce to In has d. Give an example of a stochastic matrix that has more than one equilibrium vector. Lagran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Chance The determinant by magnitude or orga, but                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| campt make it zero. A native That count reduce to In has                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| d. Give an example of a stochastic matrix that has more than one equilibrium voctor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Laconal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| [4:300] answers will vanj.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

e. Explain why the equation y=mx+b is not a linear transformation under the definitions used in this course.

it does not pass the defentions used. Consider of (x) = f(zx)? No.

Since 2f(x) = 2y = 2mx + 2b but f(2x) = m(2x) + b = 2mx + b

These are not equal

f. Explain why the complex eigenvalues of a dynamical system cannot produce a saddle point.

The magnitude of both ergenizations is The same size sence Thougase complex Conjugates

g. What are the advantages and disadvantages of finding determinants by row-reducing compared to the cofactor method?

fewer operations for large matrices

h. Give at least two reasons why being able to diagonalize a matrix is so important computationally.

when doing operations by hand, it can make powers of matrices much leaveir to compute

i. Explain the relationship between a vector  $\vec{y}$  in  $\mathbb{R}^n$ , W a subspace of  $\mathbb{R}^n$ ,  $\vec{v}$ ,  $\overrightarrow{y_{\parallel}}$  which are vectors in W, as described by the Best Approximation Theorem.

Wa subspace of R"

The Best approximation theorem sup that for a vector  $\vec{y} \in \mathbb{R}^n$  then  $||\vec{y} - \vec{y}_{||}|| < ||\vec{y} - \vec{v}||$  where  $\vec{y}_{||}$  is the orthogonal projection of  $\vec{y}$  onto w and  $\vec{v}$  is any other vector in w. In other words. The pant represented by  $\vec{y}_{||}$  is the closest point to  $\vec{y}$  in w.