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Claudius Ptolemy created epicycles to resolve a conflict between two aspects of Greek 

thought. Following the philosophy of Aristotle, the heavens were thought to be perfect, and 

therefore could allow only perfectly circular motion (Smith D. , 1953). Second was that the 

motions of planets in the heavens clearly did not follow paths that could be described by circles. 

Ptolemy, therefore, proposed a scheme of epicycles (the object follows a circular path around a 

point, which is itself moving in a circular path, which can be repeated in multiple layers) 

(Ptolemy, 1998). The scheme, by adjusting the radius and the speed of rotation of the epicycles, 

one can approximate a wide range of behavior, including motions that included retrograde 

motion of the planets, elliptical orbits and so forth.  Adding layers of epicycles allows the 

modeling of motions to become as accurate as needed depending on the number of epicycles 

included. It was this scheme of approximations that dominated the description of planetary 

motion until Kepler (Sargent, 1917).  

Ptolemy did all his work in geometric terms, but if one adopts a view of epicycles using 

parametric equations, it becomes easy to see that stacking epicycles creates functions for both 𝑥 

and 𝑦 that depend on sine and cosine functions, exactly the basis for modern Fourier series 

(Andrew, 2009). In Ptolemy’s time, the requirements of circular motion were seen as necessary 

and real, but taken as an instrumental method of approximations, the scheme remains powerful 

for making accurate predictions about planetary motion independent of the physical reality of 

those motions. Separated from requiring a physical explanation, the method of approximations 

using sine and cosine could then be free to be refined and applied to other kinds of curves 

independent of heavenly motion. In modern mathematics, Fourier series are clearly billed as an 

instrumental method of approximation, not as a representation of reality. Fourier series requires 

functions that it approximates to observe certain behaviors, such as periodicity, precisely the kind 



of behavior one can expect from orbital motion, and not necessarily from most common function 

types (Ball, 1960).  

To begin to set the stage for Ptolemaic epicycles, we begin by considering the 

Aristotelian physical world that Claudius Ptolemy hoped to explain, and within whose 

constraints, his model needed to apply.  Aristotle, as described in the Physics, believed that the 

universe was made up of two types of matter: the celestial and the terrestrial. Celestial matter 

was composed of a fifth element, which he called aether (ether) and which is sometimes called 

quintessence, and was perfect, immutable, and eternal. The terrestrial matter, on the other hand, 

was composed of the four classical elements - earth, water, air, and fire - and was subject to 

change, decay, and corruption.  Aristotle further argued that the celestial bodies, such as the stars 

and planets, were made of this perfect and immutable aether, and that they moved in perfect 

circular orbits around the Earth [emphasis mine]. Earthly matter could only be in the center and 

thus, required a geocentric worldview. He believed that the perfection of the heavens was 

demonstrated by their regular and uniform motion, which was a reflection of their perfect and 

unchanging nature. He also believed that the celestial bodies were eternal and uncreated, and that 

they existed outside of time and space (Aristotle, 1957). 

Aristotle's philosophy about the perfection of the heavens was the dominant view of the 

celestial realm for many centuries, and so it was within this paradigm that Greek astronomy and 

cosmology developed. Aristotle's ideas about the perfection of the heavens and the uniform 

circular motion of the celestial bodies provided a theoretical framework for the development of 

astronomical models using epicycles (Ptolemy, 1998). An epicycle is a small circle whose center 

moves along the circumference of a larger circle. Epicycles were used by ancient astronomers to 

explain the observed retrograde motion of the planets, which appeared to move backwards in the 



sky at certain times. Aristotle's model of the universe, which placed the Earth at the center and 

had the planets moving in perfect circular orbits around it, did not account for retrograde motion 

(suggesting that he may have been unaware of it). However, his ideas about the perfection of the 

heavens had to be accounted for in any model of planetary motion, as well as conforming to the 

reality of observations.  This system of nested circles and epicycles allowed astronomers to 

explain retrograde motion while preserving the idea of uniform circular motion, at least in the 

abstract (Sargent, 1917). 

The use of epicycles in astronomical models continued to evolve over time, with different 

astronomers proposing different numbers and configurations of epicycles, and not all of them 

conformed strictly to the requirements of uniform circular motion; they stretched Aristotle’s 

physics but tried not to break it completely. The most famous example is the geocentric model of 

the universe proposed by Ptolemy in the 2nd century CE, which used a complex system of 

epicycles to account for the observed motion of the planets. Ptolemy used a number of devices in 

his model of epicycles, including non-uniform circular motion, to account for the behavior of the 

planets. This model remained the dominant view of the universe for centuries, and was only 

replaced by the heliocentric model of Copernicus in the 16th century. Nonetheless, the use of 

epicycles in astronomical models owes a debt to Aristotle's ideas about the perfection of the 

heavens and the uniform circular motion of the celestial bodies (Cajori, 1897). 

Let’s examine Ptolemaic epicycles in greater detail. In the Almagest, Ptolemy used a 

system of epicycles to model the motion of the planets. Figure 1 shows the basics of the system 

and most common terms. 



 

In Greek astronomy, the terms deferent, equant, eccentric, and epicycle refer to the 

components of the Ptolemaic model used to explain the motion of planetary bodies around the 

Earth. Refer to the image in Figure 1 for their place in the Ptolemaic system. 

Deferent: The deferent is a circle that represents the orbit of a planet around the Earth. 

The center of the deferent is located at a point called the eccentric, which is displaced from the 

Earth’s center. The planet moves uniformly around the deferent. 

Equant: The equant is a point inside the deferent circle that is not the Earth's center. The 

planet moves at a uniform angular speed around the equant. This means that the planet moves 

faster when it is closer to the Earth, and slower when it is farther away. Motion around the Earth 

or the center of the deferent is not uniform. 

Eccentric: The eccentric is a point that is off-center from the Earth's center within the 

deferent circle. The planet moves around the eccentric in a circular orbit, while the eccentric 

moves uniformly around the Earth's center. 

Figure 1. A simplified model of the elements of Ptolemaic 

epicycles (2020). 



Epicycle: An epicycle is a smaller circle that is centered on the eccentric point. The planet 

moves around the epicycle in a circular orbit, while the epicycle moves around the deferent 

circle, producing more complex behavior than simple circular motion could produce on its own. 

The motion of the planet around the deferent is known as the planet's eccentric motion, 

and the motion of the deferent around the Earth is known as the planet's epicyclic motion. The 

combination of these two circular motions creates a complex path for the planet that accounts for 

its observed motion in the sky, including retrograde motion. All of these elements (and additional 

layers of epicycles) could be used in combination to better approximate the motion of the planets 

than could a naïve circular orbit as envisioned by Aristotle. One can see elements of the model 

that hints at the elliptical motion that was really behind the true motion. Displacing the Earth 

from the exact center is similar to a feature of elliptical orbits that place the gravitational body at 

one focus and not the center. Moreover, the constant angular speed allows for additional 

adjustments to planetary motion that also mimic elliptical orbits that also move along its orbit at 

varying speeds.  These features, some of which violated the strict letter of Aristotelian physics, 

allowed Ptolemy to adjust the speed and direction of the planet's motion at different points in its 

orbit (Ptolemy, 1998). 

The geometry of epicycles used by Ptolemy in the Almagest was a complex and 

sophisticated system that allowed astronomers to predict the positions of the planets with a high 

degree of accuracy. However, it also required a large number of epicycles and equants, making 

the model somewhat cumbersome and difficult to use. Nonetheless, the use of epicycles in the 

Almagest represented a major advance in the development of mathematical astronomy, and had a 

profound influence on the study of astronomy and the natural sciences. The development of the 

heliocentric model by Copernicus, which placed the Sun at the center of the solar system, 



eventually replaced the geocentric models that relied on these components. While the Copernican 

model reduced the number of features required to explain planetary motion, his system still used 

circles and still needed several layers of epicycles to approximate the observed behavior of the 

planets (Smith D. , 1951). 

Copernicus's heliocentric model of the solar system represented a major departure from 

the geocentric models that had been used for centuries. In the heliocentric model, the Sun is at 

the center of the solar system, with the planets, including Earth, orbiting around it in circular 

paths. In some respects, Copernicus's model was more consistent with certain aspects of 

Aristotelian physics because it was more closely based on the idea of a simple circular motion, 

despite abandoning the idea of Earth at the center. The planets were believed to move in circles 

around the Sun, with their speeds varying according to their distance from the Sun (Ball, 1960). 

To explain the apparent retrograde motion of the planets, Copernicus used epicycles 

similar to those used in the Ptolemaic system. However, in Copernicus's system, the epicycles 

were centered on the Sun rather than on the Earth. This simplified the model and eliminated the 

need for equants and deferents. Copernicus's model was still not entirely accurate, but it provided 

a much simpler and more elegant explanation of the motion of the planets than the Ptolemaic 

system. His ideas paved the way for later astronomers, such as Johannes Kepler and Galileo 

Galilei, to refine the heliocentric model and develop a more accurate understanding of the solar 

system, and paved the way for an eventual abandonment of Aristotelian physics (Andrew, 2009). 

One of the main controversies that eventually drove astronomers to break away from the 

Ptolemaic system, and Aristotelian physics in general, is the question of scientific realism vs. 

mere instrumentalism.  Realism and instrumentalism are two philosophical positions regarding 

the nature of scientific theories. Realists argue that scientific theories are true descriptions of the 



world (or should be as much as possible), while instrumentalists argue that scientific theories are 

simply tools for making predictions and should not be taken as literally true. The controversy 

surrounding the epicycle models of the heavens was rooted in this basic debate. Realists argued 

that the epicycle models accurately described the motion of the planets, and that the deferents, 

epicycles, and other complex features of the models were necessary to accurately capture the true 

complexity of the heavens. They believed that the models represented the actual structure of the 

universe and that they provided a true understanding of the motion of the planets. 

Instrumentalists, on the other hand, argued that the epicycle models were simply tools for 

making predictions, and that their accuracy did not necessarily imply that they were true 

descriptions of the universe. They believed that the models were useful for making predictions, 

but that their complexity made them difficult to understand and interpret in any literal sense 

(Chakravartty, 2017). 

The controversy was further complicated by the fact that the models were often 

associated with particular philosophical or religious beliefs. For example, some realists believed 

that the complexity of the epicycle models reflected the inherent complexity of the universe, 

which they saw as a reflection of the mind of God. Instrumentalists, meanwhile, saw the models 

as a way of understanding the universe in a purely scientific way, without reference to any 

particular philosophical or religious beliefs. It can be argued that the break with the Ptolemaic 

system was that many scientists saw the epicycle model as instrumentally accurate for predicting 

the positions of the planets, and yet, at the same time, they desired a model that could be seen as 

actually representative of what was happening in reality, which the epicycle model did not 

satisfy. This conflict drove the desire for a model that was at least as good as predicting positions 

of the planets, but was more likely to be an accurate model of reality (Chakravartty, 2017). 



In order to more closely examine the mathematics of the theory of epicycles, we’re going 

to look at a simplified version of the theory that omits some of the more complex elements such 

as equants and non-uniform motion. The theory of epicycles can be represented as parametric 

equations by defining two sets of coordinates: one for the center of the epicycle and one for the 

planet itself. Parametric equations are anachronistic for Ptolemy, but are basic elements of 

modern mathematics that allow us to consider their behavior. 

Let us assume that the center of the epicycle is located at the point (𝑎, 𝑏) in a two-

dimensional coordinate system, and that the planet is located at the point (𝑥, 𝑦) on the epicycle. 

Let us also assume that the epicycle has radius 𝑟1, and that the planet travels around the epicycle 

with angular velocity 𝜔1.  Then, the position of the planet can be described by the following set 

of parametric equations: 

{
𝑥(𝑡)  =  𝑎 + 𝑟1𝑐𝑜𝑠(𝜔1𝑡)

𝑦(𝑡)  =  𝑏 + 𝑟1𝑠𝑖𝑛(𝜔1𝑡)
 (1) 

where 𝑡 is the time parameter, which can be used to calculate the position of the planet at 

any given time. These equations describe the motion of the planet in terms of its distance from 

the center of the epicycle and its angle relative to a fixed reference point. 

The parameters 𝑎, 𝑏, 𝑟1, and 𝜔1 can be adjusted to model different epicycle systems, 

allowing for a wide range of possible planetary motions. By using parametric equations to 

describe the motion of the planets, astronomers and mathematicians were able to accurately 

predict the positions of the planets in the sky, despite the apparent complexity of their motions. 

Moreover, if the position of the deferent at the point (𝑎, 𝑏) are both themselves functions of time 

and move in a circle, then they, too, are functions of sine and cosine, with its own angular 

velocity 𝜔0, and its own radius 𝑟0.  The system then becomes 



{
𝑥(𝑡) =  𝑟0 cos(𝜔0𝑡) +  𝑟1 𝑐𝑜𝑠(𝜔1𝑡)

𝑦(𝑡) =  𝑟0 sin(𝜔0𝑡)  +  𝑟1 𝑠𝑖𝑛(𝜔1𝑡)
 (2) 

Alternatively, depending on the direction of motion, we might also have: 

{
𝑥(𝑡) =  𝑟0 sin(𝜔0𝑡) +  𝑟1 𝑐𝑜𝑠(𝜔1𝑡)

𝑦(𝑡) =  𝑟0 cos(𝜔0𝑡)  +  𝑟1 𝑠𝑖𝑛(𝜔1𝑡)
 (3) 

In either version of the model, the position at any time 𝑡 is modeled by combinations of 

sine and cosine functions. An example is shown in Figure 2. 

 

 By adjusting the radii of the two circles and their angular velocity, complex behavior like 

retrograde motion is possible.  Figure 3 shows an example of such retrograde behavior as seen 

from the perspective of someone in the center of the figure. 

Figure 2. Model using two epicycles of 𝑥(𝑡) = 4 sin(𝑡) + cos(𝑡) , 𝑦(𝑡) = 4 cos(𝑡) + sin (𝑡) 

Which produces an ellipse. Image produced by the author. (McCall, 2023) 



 

We can see the relationship between epicycles and Fourier series more clearly when we 

stretch out the model in one dimension and plot it against time. An animation snapshotted in 

Figures 4 and 5 illustrates the connection with multiple epicycles. 

 

Figure 3. The system shown is 𝑥(𝑡) = 14.6 sin(0.07𝑡) + 2.3 sin ቀ
1

1.6
𝑡ቁ, 

𝑦(𝑡) = 14.6 cos(0.07𝑡) + 2.3 cos ቀ
1

1.6
𝑡ቁ, with 𝑡 plotted on the interval [0,182.5]  

(Horner, 2016). 

Figure 4. The 3-epicycle system at the starting point (TivnanR, 2018).  



 

Fourier series represent functions as a sum of trigonometric functions. They are named 

after the French mathematician Joseph Fourier, who developed the theory in the early 19th 

century. However, the concepts behind Fourier series can be traced back to the 18th century work 

of mathematicians Brook Taylor, Jean le Rond d'Alembert, and Euler. Taylor developed a way of 

representing any function as an infinite sum of polynomial functions, known as the Taylor series. 

This work was further developed by d'Alembert (Ball, 1960). 

The specific idea of representing functions using Fourier series was first introduced by 

Fourier in his work on heat transfer. He showed that any periodic function can be represented as 

a sum of sines and cosines, with the coefficients determined by the function's Fourier series. 

There is a connection between the theory of epicycles and Fourier series approximations, 

as both involve representing a periodic function as a combination of simpler functions. In the 

case of epicycles, the motion of a planet is modeled as a combination of circular motions with 

different frequencies and amplitudes. This can be seen as a way of approximating the planet's 

motion as a sum of simpler, periodic motions. Similarly, in Fourier series approximations, a 

periodic function is represented as a sum of simpler trigonometric functions (sine and cosine) 

with different frequencies and amplitudes. This allows the function to be approximated by a 

Figure 5. A complete cycle of the 3-epicycle model using default parameters on the  

website. These parameters can be adjusted to obtain different behavior patterns 

(TivnanR, 2018). 



finite number of terms, which can be used to compute its values at different points in time. When 

we examine epicycles in terms of parametric functions, we see the clear connection between the 

inherently periodic motion of the planets and employing combinations of sine and cosine 

functions to approximate complex behavior. Once Ptolemaic epicycles were clearly freed from 

realism claims, approximation methods were free to be inspired by these methods. 

Consider the Fourier approximation of a function 𝑓(𝑡): 

  (4) 

If we take terms from 𝑛 = −𝑘 to 𝑛 = 𝑘, we get the following expansion: 

(5) 

As Andrew notes in her dissertation, this is equivalent to 2𝑘 − 1 epicycles with a center 

at 𝑐0, and 𝑐𝑛 are the radii of the corresponding epicycle (2009). One interesting difference to note 

here is that in Ptolemaic epicycles, the angular frequencies were chosen carefully to obtain 

particular behaviors and were not necessarily tied to integer multiples of the periods. However, 

the downside with this method is that the procedure is rooted in trial-and-error to find the best fit. 

One advantage is that because the parameters are chosen carefully, one can reduce the number of 

epicycles in the model. The advantage of Fourier series is that they can be chosen systematically, 

so trial-and-error is not required, but this does leave the model with potentially many more 

terms. 



Moreover, what Fourier series makes clear is that epicycles can be used to model the 

behavior of any parametric function, even complex ones such as flowers or triangles, if we are 

willing to continue stacking epicycles (Andrew, 2009). 

 

We can use this relationship between the two types of models to inform our approach to 

mathematics education. While teaching epicycles would seem to be anachronistic in a modern 

curriculum where real world applications are often a significant focus. Nonetheless, because of 

the connection to Fourier series, which are a significant feature of advanced modeling methods 

used in engineering, introducing them conceptually in a mathematics course can have significant 

advantages. Some of the ideas behind Fourier series are often introduced with processing sound 

because sound is naturally a collection of wave functions. Because epicycles are based on 

relatively simple geometric concepts (circles) and parametric equations, mathematics students in 

geometry or precalculus courses have the tools to develop a more intuitive understanding of how 

the model works and make the connection to the Fourier transform techniques even if they don’t 

end up mastering the math behind it. 

Figure 6. Plot of a Fourier series of a flower (Andrew, 2009) 



In an earlier time in US history, teaching the theory of epicycles in a math class would 

not have been considered appropriate since it was an abandoned scientific theory.  However, as 

we can see from the preceding discussion, the mathematics of it can be quite relevant even if the 

specific claims of realism for the model are no longer adopted. As Andrew notes in her 

dissertation, we can even use art as an entry point to the mathematics without the mechanics of it 

through a Spirograph (2009). Students could even be inspire to write computer models that can 

produce a variety of motions and paths that could include both planetary motion and artistic 

design.  Students are far more likely to remember the concepts behind the mathematics they learn 

if they can make a connection to other areas that might interest them more. Connecting 

trigonometry and parametric equations to music, art and astronomy could go a long way to 

encouraging students to continue to pursue math in the future. 

We see in many areas how the Greeks inspired developments in modern mathematics. 

Just as Archimedes developed techniques that were later refined with the development of 

calculus, Ptolemaic epicycles presaged the development of Fourier series. A lot would have to 

happen to make this possible including the development of trigonometry (sine and cosine 

functions) and the development of parametric equations. Fourier series further required the 

development of calculus and differential equations (Jacob & Evans, 2018). Unlike Ptolemaic 

epicycles, Fourier series never made any claims to realism and so has been far less controversial 

in history than epicycles, but as approximation methods, both are powerful techniques that 

remain useful for modern mathematics. 
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